Полезные советы

Вы сможете превратить свой смартфон в голографический 3-D плейер благодаря простому проекту, который показал в своем видео пользователь по кличке Mrwhosetheboss.

Этот пользователь создал специальное приспособление, которое, в совокупности с видео-рядом, созданным специально для голограммы , создает иллюзию 3-D картинки, парящей в воздухе .


Вам понадобится:

Старый кейс из-под дисков

Острый нож

Немного клейкой ленты (скотч)

Линейка

Бумага в клетку.

1. Начертите на бумаге 3 трапеции с размерами 1 см х 3,5 см х 6 см.

2. Вырежьте трапецию.


3. Возьмите кейс для дисков, удалите аккуратно боковины, обведите 4 раза трапецию, вырезанную из бумаги.

4. С помощью канцелярского ножа вырежьте 4 трапеции.


5. Склейте все трапеции, чтобы получилась часть пирамиды.

6. Скачайте демо-видео на свой смартфон и используйте данную конструкцию для просмотра голограммы.


Вот несколько видео клипов, которые можно использовать для данной технологии:

Как сделать голограмму

Голографическое видео

Видео клипы, которые используются для этого приспособления, проигрывают одну и ту же картинку с четырех сторон .

Когда все эти четыре видео-ряда отражаются в панелях созданного устройства , вы получаете иллюзию 3-D голограммы.

Голографический эффект

К сожалению, такую иллюзию нельзя назвать голограммой, т.к. здесь используются 2-D картинки и видео , чтобы создать нужный эффект.

Настоящая голограмма создает 3-D изображение, и использует технологию, разделяющую лазерные лучи.

Сама новость про RED и смартфоны обескуражила многих обывателей: «Серьезно? Они же камеры делают - какие еще смартфоны...»

Но ещё более неожиданным стало заявление о том, что смартфон будет поддерживать голограммы !

Многие решили, что ребята сошли с ума, либо это какой то обман века, странный пиар или…
Неужели это возможно? Может не за горами и световой меч?

- Да, это возможно.

Но не так как нам рисует голливуд - проекцию принцессы Леи мы не увидим. Скорей всего вы просто не знаете что такое голограмма потому что смотрели много фантастики вместо изучения физики. Как раз для таких людей и написана эта статья - просто о сложном.

Голография vs Фотография

- Что же такое голограммы? Посмотрим википедию...
Голография - набор технологий для точной записи, воспроизведения и переформирования волновых полей оптического электромагнитного излучения, особый фотографический метод, при котором с помощью лазера регистрируются, а затем восстанавливаются изображения трехмерных объектов, в высшей степени похожие на реальные.

Скорей всего понимания не прибавилось - лучше посмотрите видео


Если вам показалось, что это зеркала и банки от фанты за стеклом - пересмотрите еще раз.
Это и есть настоящие голограммы. Никакой хитрости - только наука.

Как это работает?

Для начала ответим на вопрос - как мы вообще воспринимаем объем ? Это возможно благодаря тому, что у нас два глаза - каждый видит объект с разных сторон.


Мозг обрабатывает эти две немного разных картинки и строит в нашем сознании одну объемную модель. Благодаря этому мы можем оценивать расстояние до предметов просто посмотрев на них - мозг автоматически оценивает напряжение глазных мышц и определяет расстояние с довольно высокой точностью.

Глаз как оптический прибор

Камера работает на тех же принципах что и человеческий глаз - поэтому рассмотрим глаз как оптический прибор.


Глаз реагирует на свет , а свет, как известно - это электромагнитная волна , точно такая же как, например, вайфай - только более высокой частоты .

Для того чтобы глаз что то увидел - в него из этой точки должен прийти свет, когда мы видим какой то объект - мы регистрируем отраженный этим объектом во все стороны свет, который отражает во все стороны каждая точка поверхности

Каждая точка поверхности отражает свет во все стороны!

Это крайне важный принцип, который нужно понять - через каждый кусочек пространства проходит целая мешанина различных волн в самых разных направлениях, но видим мы только то, что попадает к нам в глаз через зрачок.

Из всей мешанины волн в глаз/фотоаппарат попадает лишь маленький кусочек от волны, который проскочил через зрачок.


Когда мы поворачиваем голову, чтобы увидеть объект находящийся сбоку - в наш глаз начинают попадать кусочки волн, отраженных от этого объекта.

Эти волны всегда были тут , просто они невидимы для глаза, пока не будут идти в него спереди.

По тому же принципу работает фотоаппарат/кинокамера - из всего многообразия волн проходящих во все стороны через пространство - фиксируется только часть, которая идет в одном направлении - поэтому фотографии выглядят плоскими - это всего лишь малая часть изначальной информации

Голография


Теперь наконец можем перейти к принципу создания объемных снимков , рассмотрим часть пространства, обведенную фиолетовым, представим что поставили перед объектом стекло.


Если бы нам удалось каким то образом заморозить/запомнить картину волн, проходящих через это стекло, а затем воспроизвести в точности все амплитуды, частоты и фазы - тогда бы мы сохраняли не маленький зеленый кусочек от волны, который несет информацию только об одном направлении , а целую картину всех волн, которая содержит информацию обо всех возможных углах обзора.

Если не видно разницы...

Если из стекла выходит точно такая же картина из волн, которые испускал объект на момент «запечатывания» этой картины - визуально будет невозможно отличить такую «фотографию» от реального объекта, причем объект будет виден под всеми углами так как восстановлена вся картина волн, проходивших через пространство


Камера видит только в одном направлении - так что для того чтобы зафиксировать весь фронт волны нам нужно сделать снимки во всех направлениях, а потом объединить их в одну объемную картину - на таком принципе основано 3D сканирование.

Такой метод съемки 3D объектов аналогичен FDM 3D печати пластиком, которые на самом деле печатают в 2D просто много много раз - на качественном уровне это «костыль»

Реализация

Дело за малым - осталось всего лишь придумать как запечатать в пространстве все радиоволны, которые через него проходят, а затем восстановить, тут я пожалуй не буду углубляться в технические детали - главное понять основной принцип. (Если будет интерес - есть возможность снять голограмму в лаборатории спектроскопии, тут много нюансов - так что это тема для следующей статьи).

Останавливаем свет

Проблема в том, что волны находятся в постоянном движении . А если мы хотим зафиксировать картину в пространстве - мы должны прореагировать с каким то фоточувствительным материалом в течение некоторого времени и запечатываемая картина должна быть неподвижна на это время .

Делая обычную фотографию - мы не останавливаем свет, мы вырезаем узкое направление вдоль которого экспонируем матрицу лучами с постоянной амплитудой, каждый из которых соединяет точку объекта и пиксель на матрице.


Стоячие волны

Мы хотим запечатлеть все направления разом , и у нас нет глаза Агамото , чтобы заморозить время - придется думать головой.

Хорошо что это уже сделал еще в 1947 году Денеш Габор (тысяча девятьсот сорок седьмом году, Карл!). За что получил нобелевскую премию.

Суть в следующем - если сложить две волны с одинаковой частотой и разными направлениями, то в местах пересечения максимумов и минимумов этих волн возникнет стоячая волна - виртуальная волна(так как световые волны друг на друга не действуют), которая является суммой двух бегущих волн одинаковой частоты. За счет этого можно засветить неподвижную картину из пересечений двух волн в фотопластинке.

Засвечивая одну пластинку тремя цветами опорных волн - красным синим и зеленым - мы получим полноцветную голограмму, не отличимую от оригинала.

Если теперь убрать предмет и посветить на пластинку опорной волной - из пластинки выйдет точная копия волн, которые создавал сканируемый предмет.

Технологические требования

Так как очень важно, чтобы частоты предметной и опорных волн были одинаковые - необходим невероятно стабильный источник света, чтобы стоячая волна оставалась неподвижной - при небольшом различии частот - волна начнет двигаться и голограмма смажется.

Зеленый свет

Такой источник существует - он называется лазер . До изобретения лазера в 1960 году голография не имела коммерческого развития, для записи использовались газоразрядные лампы.

В 2009 году был изобретен первый в мире полупроводниковый зеленый лазер (красный и синий уже были). До этого зеленые лазеры использовали удвоение частоты инфракрасного лазерного диода, пропущенного через нелинейный оптический кристалл, удваивающий частоту. Однако данная конструкция имеет крайне низкий кпд, высокую стоимость, сложность и т.д.

Изобретение полупроводникового зеленого лазера дало зеленый свет разработке миниатюрных RGB лазерных проекторов . Прошло уже 9 лет - вполне достаточное время для перехода технологии в промышленное использование- и сейчас мы начинаем наблюдать самых активных участников рынка, скоро будет еще больше классных и интересных продуктов

Разрешающая способность

Разрешающая способность записывающей пластинки должна быть невероятно высокой - ведь расстояние между засвечиваемыми узлами стоячей волны сравнимо с длинной волны света, а это ~600нм! То есть разрешающая способность как минимум 1666 мм^-1.

Если при фотографировании - каждой точке матрицы соответствует точка на объекте, то в голограмме - на каждую точку матрицы падает свет от всех точек объекта, то есть каждая часть голограммы содержит информацию о всем объекте.

Выводы:

  1. Принцип голографии был придуман полвека назад, но реализовать его на хорошем уровне не позволяло отсутствие технологий - в частности лазеров, материалов для записи
  2. Даже используя обычные пластинки - создание голограммы достаточно тонкий и кропотливый процесс - сделать голографический полноцветный сканер и голографический экран с цифровым управлением в смартфоне - очень сильный вызов.
  3. Даже возможность делать одну статическую голограмму со штатива(не говоря уже о записи голограммы «с рук») и отображать ее на революционном голографическом дисплее в форм факторе смартфона - уже будет достижением которое изменит целые индустрии.
P.S. Также голография используется в производстве процессоров и микроскопии, позволяя преодолеть дифракционный предел обычного фотошаблона.

UPD: Спасибо за комментарий

Относительно недавно была статья про камеры и дисплеи светового поля, похоже, что RED как раз на этой основе и готовит свою новинку

В плане развития мелкой моторики рук, а заодно и навыков работы с различными материалами, я провел небольшой домашний мастер класс по созданию простеньких голограмм при помощи мобильного телефона или планшета и прозрачного поликарбоната. В сети я нашел два варианта создания голограмм, но оба они используют одни и те же принципы получения трехмерной оптической иллюзии. Возможно, что если как следует покопаться, то можно найти еще варианты. Поэтому, если вдруг вам удалось нагуглить еще способы для создания простой голограммы при помощи экрана смартфона, то смело отписывайтесь в комментарии с соответствующими ссылками.

Итак, оба варианта используют особенности оптики, а именно преломление лучей света при переходе между средами с различной оптической плотностью, да побьют меня оптики палками за дилетантские термины, но я продолжу. Суть в том, что при прохождении луча света от экрана мобильного телефона, планшета, дисплея монитора или вообще телевизора через границу воздуха и прозрачного поликарбоната происходит частичное отражение света. Именно благодаря этому отражению и создается эффект голографического, т. е. полностью объемного, изображения. Исходя из этого можно сообразить, что для создания голограммы нужен прозрачный поликарбонат. А где его взять?

В современном мире отличным источником поликарбоната могут служить обычные коробки для CD дисков, которые можно безвозвратно позаимствовать из домашней аудиотеки или просто купить в компьютерном или стоковом магазине. В таких магазинах, как правило, продаются записываемые CD или DVD в упаковке «на шпинделе». А заодно, дабы заработать еще немного денег, магазины продают отдельно коробочки к ним. Лучше всего использовать прозрачные, неокрашенные коробочки, дабы не терять драгоценную яркость экрана, изображение при этом будет наилучшим из возможного.

Вариант 1. Holho - пирамидальная голограмма

Для пирамидальной голограммы, даже придумали особое название Holho. Суть данной техники в трансляции сразу четырех изображений на слегка усеченную пирамиду, поставленную «на попа», т. е. вершиной вниз, на экран смартфона. При проигрывании специально подготовленного ролика на экране телефона, изображение отражается от граней пирамиды и создается полная иллюзия парящего в воздухе объекта. Суть пирамидальной голограммы в том, что каждое из изображений проецируется на свою грань, а при просмотре наблюдатель видит сразу все четыре изображения, сведенные в единую трехмерную картинку гранями пирамиды.

Пирамида собирается просто, не нужно оканчивать курсы ораторского мастерства Феликса Кирсанова и Высшую Школу Экономики, дабы вырезать из крышечки от коробочки диска требуемые заготовки. Нужно их всего четыре штуки, а вырезаются они по шаблону, любезно заготовленному мною.

Сам шаблон для вырезки доступен по этой ссылке . При печати необходимо точно выбрать размер бумаги и включить печать в настоящем размере.

Вырезать поликарбонат не составит труда, если распечатанный шаблон подкладывать под крышечку, а затем делать глубокие прорези на нем по линиям при помощи острого обойного ножа. Сделанный таким образом рез, затем с легкостью позволяет отломить ненужный участок крышки. Только рез нужно делать на всю ширину крышки, иначе надлома не cлучится. Вырезанные заготовки можно склеить при помощи суперклея или просто скрепить их липкой лентой типа Scotch.

Одно из демонстрационных видео.

Для получения эффекта голограммы необходимо перебраться в помещение с приглушенным светом, установить на экране смартфона пирамиду, острием вниз, отцентрировать ее по меткам на видео. И в принципе все, можно наслаждаться просмотром чудесных образчиков «домашней магии».

И еще одно демонстрационное видео.

На YouTube загружено порядочное количество демонстрационных видео под Holho, поэтому можно смело подобрать даже что-то совсем необычное. Более того, уже появились промышленно изготовленные и приятно выглядящие конвертеры пирамидальной технологии Holho. И помните, что в качестве источника видео для голограммы может выступать не только экран телефона или планшета, но и любой другой источник, тут важно сопоставить размер пирамидки и экрана.

Вариант 2. Фронтальная линейная голограмма

В качестве альтернативы Holho можно упомянуть линейную голограмму, которая создается посредством проецирования изображения на последовательно установленные отражатели. Если пирамидальная голограмма выглядит голограммой с любой стороны, то линейная позволяет насладиться нереальным эффектом только с одной стороны, с фронтальной. Суть устройства для воспроизведения линейной голограммы заключается почти в том же самом, что и у пирамидальной, но здесь производится трансляция изображения на несколько, обычно три, мини экранчика из прозрачного поликарбоната. Экранчики устанавливаются под углом в 45 градусов и друг за другом. Сами экраны различаются по высоте, что добавляет еще большего реализма в получаемое изображение.

Для изготовления устройства идеально подходят те же самые коробочки от компакт-дисков, только тут в ход они идут полностью, за что отдельное спасибо автору устройства. Разрезать коробку можно применяя методику, использованную при построении пирамидального устройства, только отмерять размеры экранов придется самостоятельно. Да и для фиксации частей устройства применяется термо-клей, а не липкая лента. Но при наличии хотя бы минимально прямых рук, все получается с первого раза. При сборке, немного придерживайте экраны, пока клей полностью не затвердеет.

Для воспроизведения голограммы необходимо положить устройство линейной голограммы на экран планшета или более крупное устройство. Кстати, и линейную, и пирамидальную голограммы можно использовать так как в оригинальном видео, так и в перевернутом состоянии. Эффект от этого не меняется, хотя видео может оказаться перевернутым.

Если сравнивать оба устройства, то Holho версия мне нравится больше, поскольку позволяет создать голограмму без каких-либо ограничений по количеству планов сцен. В линейной версии, пользователю доступна лишь несколько уровней объема, равных количеству установленных поликарбонатных экранов. При трех экранах - соответственно три уровня глубины сцены.

Другими словами, если версия Holho создает действительно объемное изображение, парящее в воздухе, то вариант с фронтальной линейной голограммой больше напоминает эффект 3D-телевидения на плоском экране. Хотя, безусловно, тот и другой варианты смотрятся неплохо и их стоит собрать оба, благо ничего сверхординарного для создания подобной игрушки не требуется, а времени на сборку сразу двух устройств вряд ли уйдет более часа.

Все знают, что голограмма - это объемное изображение. Но мало кто слышал о том, что его можно создать при помощи обычного смартфона! Почувствуй себя настоящим волшебником, мы знаем секрет этого чуда и с радостью им делимся.

Вскоре появятся телефоны, которые будут проецировать голографическое изображение собеседника во время телефонного звонка, создавая иллюзию присутствия человека рядом. Уже существуют объемные изображения, которые можно потрогать руками! Пока ученые продолжают делать невероятные открытия, ты можешь насладиться этим эффектным экспериментом…

Проектор голограмм для телефона

Тебе понадобится

  • пластиковая прозрачная коробочка от CD-диска (можно заменить листом для ламинирования)
  • канцелярский нож или стеклорез
  • миллиметровая бумага
  • линейка
  • скотч или суперклей
  • ручка
  • смартфон
  1. Начерти на миллиметровой или обычной белой бумаге трапецию с пропорциями 1 см х 4 см х 6 см (6 см - нижнее основание, 1 см - верхнее, а 4 см - высота). Аккуратно вырежь фигуру.
  2. По готовому бумажному шаблону вырежь 4 таких трапеции из прозрачного пластика при помощи канцелярского ножа.
  3. Скрепи трапеции скотчем или суперклеем между собой по бокам. Теперь нужно всего лишь поставить конструкцию на свой смартфон и включить специальное видео с голограммой!

Этот короткий ролик продемонстрирует тебе, как легко сделать подобный трюк. Результат привел меня в абсолютный восторг!

А вот и видео с голограммой!

Я обязательно повторю этот трюк! Могу себе представить, в какой восторг придут мои дети, увидев этот проектор голограмм для телефона…

Прогресс не стоит на месте. И вот, доступно такое новшество, как просмотр голограммы на обычном телефоне. Затратив всего лишь за 5 минут, вы получите возможность увидеть 3D изображение, которое удивит не только детей, но и взрослых.

Необходимые элементы

Чтобы увидеть 3D изображение на смартфоне для начала понадобится изготовить 3D пирамидку. Какие же элементы необходимы для её изготовления:

  • простой карандаш;
  • маркер;
  • линейка (необязательно длинная);
  • бумага (желательно в клетку, чтобы не использовать транспортир);
  • ножницы (чтобы вырезать трафарет);
  • нож (идеально подойдёт канцелярский);
  • скотч (прозрачный, неширокий) или клей для пластмассы;
  • пластиковые контейнеры от CD дисков (прозрачные).

Чертим трапецию

После того как подготовлены все необходимые элементы, следует приступить к черчению трапеции (трафарета). Для этого берём лист бумаги и с помощью линейки и карандаша чертим трапецию с такими сторонами:

  • низ – 6 сантиметров;
  • верх – 1 сантиметр;
  • высота – 3,5 сантиметра.

После окончания берём ножницы и вырезаем получившуюся трапецию. Это будет трафарет с помощью которого будут сделаны стены будущей пирамидки.

Вырезать трапеции из коробочек от CD (4 штуки)

Это самый трудоёмкий этап изготовления пирамидки, требующий повышенного внимания. Причина трудоёмкости в том, что пластик, из которого изготовлена коробка CD диска очень хрупкий и при сильном давлении может начать трескаться.

  1. Разбираем контейнер от диска.
  2. Прикладываем получившийся трафарет.
  3. Обводим трапецию маркёром.
  4. Берём линейку и нож.
  5. Приложить линейку по линии маркёра и аккуратно провести по ней ножом.
  6. После появления бороздок линейку можно убрать.
  7. Вырезать трапецию.
  8. По образцу получившейся трапеции вырезать ещё 3 штуки. Всего должно быть 4.

Скрепить 4 детали

После подготовки деталей можно приступить к их соединению. Для этого следует взять всё 4 детали и собрать их в пирамиду, где низом будет сторона в 1 сантиметр. Их можно скрепить полосками скотча или проклеить клеем для пластмассы. А можно сделать и то, и то, для надёжности конструкции: скрепить скотчем, чтобы не распадалась и швы закрепить клеем.

Загрузить на телефон специальное видео

После того как 3D пирамидка готова осталось подготовить смартфон. Есть несколько доступных вариантов:

  1. Скачать специальное видео с YouTube.
  2. Скачать программу для воспроизведения голограмм. В такой программе уже имеется видео и можно с её помощью скачать ещё.

Положить конструкцию на телефон

Теперь остался последний шаг и можно будет увидеть 3D голограмму в середине пирамидки. На первых секундах после запуска видео появляется рисунок в виде крестика, по граням которого надо поместить изготовленную пирамидку. Для более точного размещения лучше нажать паузу и выставить как надо.

Вот так с помощью подручных средств вы сможете изготовить пирамидку за 5 минут, в центре которой вы увидите 3D изображение. Благодаря разнообразию доступных видео можно посмотреть удивлять окружающих разными голограммами и даже использовать их в качестве ночника.


Close