Что такое ГЛОНАСС сегодня знают многие. Но как именно работает эта система, для чего она предназначена и что необходимо для ее эффективного использования, часто остается «за скобками».

Расценивать систему ГЛОНАСС просто как систему спутниковой навигации - значит, предельно упрощать ее функционал. Сегодня она может использоваться не только военными (как это было изначально задумано), но и владельцами коммерческих предприятий, а также рядовыми автолюбителями.

ГЛОНАСС – это российская разработка, которая обеспечивает точное позиционирование объекта в пространстве с минимальной погрешностью. Для определения координат используется специальное оборудование, которое при поддержке наземной инфраструктуры связывается с сетью спутников, выведенных на околоземную орбиту.

Принцип работы системы:

  • На объект, координаты которого необходимо определить, устанавливается приемно-передающее устройство – терминал .
  • Для позиционирования терминал подает запрос на спутники. Чем больше спутников ответят на запрос (в идеале – не менее 4), тем точнее будут определены координаты.
  • Ответный сигнал поступает в терминал, программный комплекс которого анализирует время задержки для разных спутников. На основе анализа ответной информации определяются координаты объекта, на котором установлено приемное оборудование.

При постоянной работе терминала (т.е. регулярной отправке запросов и анализе ответов) система ГЛОНАСС может определять не только положение, но и скорость движения объекта. При движении точность позиционирования снижается, но все равно остается достаточной для того, чтобы навигационное оборудования могло выполнить привязку координат объекта к электронной карте местности и построить маршрут.

Сравнение с основным аналогом - системой GPS

Дать полный ответ на вопрос «Что такое ГЛОНАСС?» невозможно без сравнения его с «ближайшим конкурентом» - системой глобального позиционирования GPS. Работы над обеими системами начались в СССР и США примерно в одно время – в начале 80х годов прошлого века. После того как спутниковая навигация вышла из-под полного контроля военных и стала применяться в коммерческих целях, ГЛОНАСС и GPS развивались по достаточно схожим сценариям.

Обе системы работают на базе группировок из 24 спутников на геостационарных орбитах. Но есть у них и отличия:

  • Российские спутники двигаются в 3 плоскостях (соответственно, 8 аппаратов на одну орбиту).
  • У спутников GPS выделено 4 орбиты по 6 аппаратов в каждой.
  • Погрешность позиционирования у GPS несколько ниже, но обе системы достаточно точно определяют координаты.
  • Основное преимущество GPS - практически 100% покрытие территории земного шара. ГЛОНАСС полностью покрывает территорию РФ, но за пределами Российской Федерации есть участки, в которых сигнал от спутников очень слабый или полностью отсутствует.
  • Также есть нюансы технического характера: сервис из США использует кодировку CDMA, российский - более сложную и потому более энергоемкую кодировку FDMA. Из-за этого срок эксплуатации спутников ГЛОНАСС сокращается, так что возникает потребность в более частом выводе техники на орбиту.

Сложно говорить об однозначном преимуществе одной из двух описанных навигационных систем. Тем более что чаще всего оборудование для удаленного позиционирования делают комбинированным: оно может работать как со спутниками GPS, так и с аппаратурой ГЛОНАСС.

Сфера применения

Аппаратура и программное обеспечение, которое дает возможность определять местонахождение объекта с помощью спутниковой сети, может решать несколько задач.

Основная функция, которую выполняют бытовые терминалы ГЛОНАСС - глобальная навигация для транспорта. Такое оборудование представляет собой усовершенствованную карту: координаты, определённые терминалом, накладываются на план местности и показывают оптимальное направление движения к заданному пункту.

Кроме этого оборудование может использоваться:

  • В системах мониторинга транспорта . Предприятия, вынужденные отслеживать движение множества транспортных средств (автобусы для перевозки пассажиров, грузовики) по регулярным или нерегулярным маршрутам, получает возможность в любом момент увидеть, где находится та или иная машина. Для этого автомобили оснащаются ГЛОНАСС-терминалами, которые подключаются к программному обеспечению.

Кроме непосредственного отслеживания перемещения техники диспетчер получает возможность контролировать соблюдение скоростного режима, режима труда/отдыха шофера, сохранности груза в холодильных отсеках рефрижераторов, уровня горючего в баках/цистернах. Для решения этих задач может устанавливаться дополнительное оборудование, которое подключается к разъемам терминала.

  • В беспилотных автомобилях. Для беспилотников спутниковая система навигации наряду с сенсорами, которые считывают параметры окружения – основные управляющие элементы. Такое оборудование уже производится и проходит испытания - в том числе на трассах РФ. Эксперты прогнозируют рост доли беспилотной техники на дорогах уже в ближайшем будущем.
  • В противоугонных системах. ГЛОНАСС-трекер , скрытно установленный в машине, может подать сигнал тревоги, если координаты автомобиля изменяться без ведома хозяина. Кроме того, оборудование может периодически посылать сообщения с указанием местонахождения авто – это облегчит владельцу или представителям правоохранительных органов поиск украденной машины.

ГЛОНАСС для контроля транспорта

Если в сегменте систем навигации для водителей GPS традиционно остается более популярным, то ГЛОНАСС занимает более выгодную нишу в коммерческом сегменте. Связано это с активным развитием систем удаленного мониторинга транспорта.

Такие системы традиционно включают сеть ГЛОНАСС-терминалов, установленных на технике, и диспетчерское программное обеспечение. Внедрение мониторинга предусматривает его интеграцией с логистической схемой предприятия.

Основная задача – координация работы транспортного департамента и отслеживание движения автомобилей, перевозящих пассажиров или грузы, в режиме реального времени. Координаты каждой машины определяются по спутнику с установленным интервалом и накладываются на карту, потому диспетчер или руководитель департамента получает максимально объективную и оперативную информацию.

Кроме этого, мониторинг транспорта может использоваться для:

  • Повышения уровня дисциплины. Навигационный терминал отслеживает движение машины по маршруту, исключая нецелевое использование техники и простои. Любая незапланированная остановка или отклонение от маршрута должны быть мотивированы водителем, причем связаться с ним диспетчер может сразу при обнаружении нарушения.
  • Повышения безопасности движения и снижения аварийности. Система ГЛОНАСС дает возможность контролировать скорость движения, сигнализируя диспетчеру о превышении скорости. Кроме того, мониторинг позволяет отслеживать переработку для соблюдения режима труда и отдыха. Это не только снижает риск аварий из-за переутомления, но и гарантирует отсутствие штрафов при проверке показаний тахографа .
  • Контроль уровня горючего. Установка датчиков уровня топлива с подключением их к терминалу практически полностью исключает возможность хищения ГСМ.

Что такое ЭРА ГЛОНАСС?

Система определения координат с помощь спутников ГЛОНАСС может решать и еще одну задачу – экстренное оповещение об аварии. Для этого в машину устанавливается терминал ЭРА-ГЛОНАСС (УВЭОС) с SIM-картой для работы в мобильной сети, и «тревожная кнопка» для вызова диспетчера.

Если машина оборудуется ЭРА-ГЛОНАСС при производстве или поставке в РФ, то кроме терминала с кнопкой вызова в нее устанавливаются также датчики, реагирующие на повреждения и автоматически подающие сигнал тревоги при ударе или перевороте.

Основная задача системы - оповестить экстренные службы (ДПС ГИБДД, МЧС, Скорую Помощь) о ДТП, передав им координаты места аварии и базовые сведения о машине и пассажирах. При этом сигнал о произошедшем принимает диспетчер колл-центра, он же передает полученные сведения спасательным службам.

Особенности работы экстренного информирования

Работает ЭРА-ГЛОНАСС по простому принципу:

  • Сигнал тревоги может быть активирован автоматически (сработал датчик удара/переворота) или в ручном режиме (водитель либо кто-то из пассажиров нажал кнопку).
  • После того как сигнал поступит в колл-центр, диспетчер связывается с машиной в голосовом режиме (конструкция терминала включает динамик и микрофон). Это необходимо для исключения ложных вызовов или случайных срабатываний кнопки «SOS».
  • Если ответ не был получен, или водитель подтвердил факт ДТП, информация передается спасательным службам.

Автоматическая работа системы минимизирует время между аварией и прибытием помощи на место происшествия. Это значительно снижает смертность на дорогах, потому что у Скорой Помощи и спасателей появляется больше времени на оказание квалифицированной помощи.

Надежность системы очень высока: терминалы снабжаются автономными источниками питания, и даже при обесточивании бортовой сети во время аварии они сохраняют работоспособность в течение минимум нескольких часов. Этого вполне хватает для определения координат, а также для связи с колл-центром.

SIM-карта, установленная в терминале, обеспечивает устойчивую связь с диспетчером везде, где есть покрытие мобильной сети. Для обеспечения надежной связи приборы комплектуются эффективными антеннами для сотовой связи и спутников ГЛОНАСС. Обычно при хорошем качестве сигнала данные передаются по GPRS (используется 3G модем), при проблемах со связью терминала может отправлять служебные SMS с основной информацией для экстренных служб.

И сам сеанс связи с диспетчером, и вызов помощи путем активации экстренного информирования спасательных служб полностью бесплатны.

Какие данные собирает?

УВЭОС обязательны к установке для всех автомобилей, которые выпускаются в обращение на территорию РФ. Но если новые машины оснащаются терминалами, тревожными кнопками и датчиками на производстве, то при импорте техники владелец обязан за свой счет установить ЭРА-ГЛОНАСС, иначе эксплуатировать машину в РФ будет невозможно.

Один из аргументов против оборудования автомобиля ЭРА-ГЛОНАСС – возможное отслеживание перемещения техники по спутниковой сети (т.е. незаконная передача личных данных спецслужбам) или прослушка салона. На практике же в терминалах не реализована функция трекинга, потому без ведома владельца отследить движение машины нельзя.

По информации производителей, терминал собирает и передает только такие данные:

  • Координаты места аварии.
  • Скорость на момент аварии.
  • Тип срабатывания сигнала тревоги (датчик удара/переворота, принудительный вызов).
  • Данные о машине: номер, марку, тип двигателя (бензин/дизель).
  • Количество пристегнутых ремней безопасности.

Также службам спасения передается информация, полученная диспетчером при разговоре с водителем.

Сегодня ГЛОНАСС - это не просто навигатор, который позволит не потеряться на незнакомых дорогах. Возможности спутникового позиционирования куда шире, и воспользоваться ими может как рядовой автовладелец, так и руководитель коммерческого предприятия с обширным парком автомобилей.

) предназначен для определения текущих координат, высоты, скорости и времени по сигналам спутниковых навигационных систем ГЛОНАСС, GPS и SBAS (WAAS, EGNOS). Легко встраивается в навигационные комплексы и системы.

Область применения

Навигационный приемник может применяться в высокоточных навигационных системах, в том числе в системах с высокой динамикой объектов, в системах управления движением железнодорожного, автомобильного, воздушного, морского, речного и других видов транспорта.

Модуль приемника выполнен в виде печатной платы с односторонним расположением элементов и контактными площадками под поверхностный монтаж.

Технические характеристики

Навигационные характеристики

Наименование

Значение

Время первого определения навигационных параметров, с, не более:
— «горячий» старт 5
— «теплый» старт 35
— «холодный» старт 40
Время восстановления слежения за сигналами рабочего созвездия НКА после потери слежения при времени потери, с, не более:
— до 120 с 5
— до 10 мин 10
Темп определения навигационных параметров, Гц 1—10
Погрешность формирования секундной метки времени относительно единого времени UTC, мкс, не более 0,1
Точность определения географических координат с вероятностью 0,95, м, не более:
— по системе ГЛОНАСС 20
— по системе GPS 15
— по системам ГЛОНАСС/GPS 15
— в дифференциальном режиме 3

Электрические характеристики и конструктив


Введение в систему ГЛОНАСС

ГЛОНАСС (ГЛОбальная НАвигационная Спутниковая Система) это спутниковая радионавигационная система, позволяющая неограниченному числу потребителей в любой точке Земли и воздушного пространства независимо от метеоусловий определять с высокой точностью свои координаты, скорость движения и точное время. Области использования системы ГЛОНАСС обширны и разнообразны. Среди них можно выделить следующие:


  1. Организация воздушного и морского движения, повышение безопасности полетов и мореплавания.

  2. Геодезия и картография, составление земельных и лесных кадастров, строительство дорог, прокладка коммуникаций и трубопроводов контроль сейсмически опасных районов, геология и разведка полезных ископаемых, разработка нефтяных и газовых месторождений на участках прибрежных шельфов, определение параметров вращения Земли и т. д.

  3. Мониторинг наземного транспорта, организация и управление движением грузов, междугородним железнодорожным и автотранспортом, создание «интеллектуальных» транспортных средств.

  4. Синхронизация шкал времени удаленных друг от друга объектов.

  5. Экологический мониторинг, организация поисково-спасательных работ.

Характеристики системы ГЛОНАСС


  • Точность навигационных определений по положению, м (99,7% вероятности) — 50—70.

  • Точность определения составляющих вектора скорости потребителя, м/с (99,7% вероятности) — не хуже 0,15.

  • Точность привязки эфемеридного времени к всемирному гринвичскому (99,7% вероятности) — 1 мкс.

  • Время, необходимое для проведения: — первого навигационного определения — от 1 до 3 минут; последующих навигационных определений — от 1 до 10 c.

Первый спутник ГЛОНАСС (Космос 1413) был запущен 12 октября 1982 года. Официально система ГЛОНАСС введена в действие 24 сентября 1993 по распоряжению Президента Российской Федерации.

Как работает система ГЛОНАСС

Для определения трехмерных координат, скорости и времени потребитель использует навигационные сигналы, постоянно передаваемые спутниками ГЛОНАСС. Каждый спутник ГЛОНАСС передает навигационные радиосигналы двух типов: стандартной точности (СТ) и высокой точности (ВТ). Сигнал СТ передается в диапазоне L с использованием принципа частотного разделения каналов. Это означает, что каждый спутник ГЛОНАСС передает навигационный сигнал на собственной несущей частоте: L1=1602 MHz + 0,5625n MГц, где n — номер частотного канала (n=0,1.2…). Спутники, которые находятся в противоположных точках плоскости орбиты (антиподальные спутники), могут передавать навигационные сигналы на одной и той же несущей. Одновременное нахождение антиподальных спутников в зоне видимости отдельного потребителя невозможно. Навигационный приемник потребителя автоматически принимает сигналы не менее чем от 4 спутников ГЛОНАСС и проводит измерения псевдодальностей до этих спутников и скоростей их изменения. Одновременно с проведением измерений из сигналов спутников выделяются и обрабатываются навигационные сообщения. В результате совместной обработки в процессоре приемника измерений и навигационных сообщений вычисляются три координаты потребителя, три составляющих скорости его движения и точное время.

Состав системы ГЛОНАСС

Система ГЛОНАСС включает в себя три подсистемы (сегмента): подсистему космических аппаратов (орбитальный сегмент), наземный комплекс управления (наземный сегмент) и подсистему (сегмент) потребителей.

Подсистема космических аппаратов

Полностью развернутая орбитальная группировка ГЛОНАСС состоит из 24 космических аппаратов, размещенных в трех орбитальных плоскостях. Плоскости разнесены по долготе на 120 градусов и сдвинуты относительно друг друга по аргументу широты на 15 градусов. В каждой плоскости размещены по восемь спутников с равномерным сдвигом по аргументу широты 45 градусов. Спутники расположены на круговых орбитах с наклонением 64,8 градуса и периодом обращения, примерно равным 11 часов 15 минут. Такая конфигурация орбитальной группировки позволяет обеспечивать постоянное присутствие как минимум 5 спутников с приемлемой геометрией созвездия в зоне видимости потребителя, находящегося в любой точке Земли и околоземного пространства.

В настоящее время орбитальная подсистема ГЛОНАСС состоит из 24 работающих спутников и одного резервного. При этом обеспечивается непрерывное навигационное поле с постоянным нахождением 5…8 спутников ГЛОНАСС в зоне видимости потребителя. Характеристики наблюдаемости спутников ГЛОНАСС в северных широтах (> 50 градусов) лучше, чем характеристики наблюдаемости спутников GPS.

Спутник ГЛОНАСС

Выведение спутников ГЛОНАСС на орбиту осуществляется Военно-космическими силами России с космодрома Байконур. Носитель тяжелого класса «ПРОТОН» выводит одновременно три спутника. В состав бортовой аппаратуры спутника ГЛОНАСС входят навигационный комплекс, комплекс управления, системы ориентации, стабилизации, коррекции и т. д. Каждый спутник оснащен цезиевым стандартом времени/частоты, предназначенным для формирования высокостабильной бортовой шкалы времени и синхронизации всех процессов в бортовой аппаратуре. Бортовой компьютер обрабатывает, поступающую из НКУ навигационную информацию, и преобразовывает ее в формат навигационного сообщения для потребителей.

Навигационное сообщение

Навигационное сообщение передается в составе навигационного радиосигнала и включает в себя:


  • спутниковые эфемериды, частотно-временные поправки к бортовой шкале времени относительно системного времени ГЛОНАСС и UTC(SU);

  • метки времени;

  • альманах системы.

Эфемериды представляют собой точные координаты (x,y,z), и их первые и вторые производные, которые описывают положение спутника в геоцентрической системе координат ПЗ-90. Альманах содержит информацию о всех спутниках системы, а именно: кеплеровы элементы, грубые значения временных поправок к бортовому времени относительно системного и признаки исправности/неисправности каждого спутника.

Наземный комплекс управления

Управление орбитальной группировкой ГЛОНАСС осуществляет наземный комплекс управления (НКУ). Он включает в себя Центр управления системой(ЦУС) (г. Голицыно-2, Московская область) и сеть станций слежения и управления, рассредоточенных по всей территории России. Наземный комплекс управления осуществляет сбор, накопление и обработку траекторной и телеметрической информации о всех спутниках системы и выдачу на каждый спутник команд управления и навигационной информации. Траекторная информация периодически калибруется с помощью лазерных дальномеров (кванто-оптических станций) из состава НКУ. Для этого спутники ГЛОНАСС оснащены лазерными отражателями. Для правильного функционирования системы очень важна синхронизация всех процессов. Для этого в составе НКУ предусмотрен Центральный синхронизатор (ЦC), который представляет собой высокоточный водородный стандарт времени/частоты. ЦС синхронизирован с Национальным эталоном времени/частоты UTC(SU).

Разработка дифференциальных подсистем ГЛОНАСС в России

Вопросами исследования дифференциального режима навигации для системы ГЛОНАСС в России активно начали заниматься начиная с конца 70-хгодов, практически параллельно с разработкой самой системы ГЛОНАСС. В этих работах приняли активное участие ученые Центрального научно-исследовательского института Военно-космических сил, Российского научно-исследовательского института космического приборостроения, Российского института радионавигации и времени, научно-производственного объединения прикладной механики. Однако в силу различных объективных причин практическая реализация дифференциального режима навигации в России в виде дифференциальных подсистем затянулась.

Активизация работ по дифференциальным режимам навигации в России произошла в 1990—1991 годах. Необходимо отметить, что зоны действия некоторых зарубежных дифференциальных сетей GPS частично захватывают территорию России и акватории омывающих ее морей. Кроме того, отдельные зарубежные фирмы проявляют серьезный интерес к освоению российского рынка потребителей и развертыванию своих дифференциальных сетей на территории России. В этих условиях, возрос интерес российских потребителей и производителей навигационной аппаратуры к дифференциальным режимам навигации. Поэтому были активно начаты работы по созданию дифференциальных станций различного назначения.

В настоящее время в России существуют планы в создании локальных и региональных дифференциальных подсистем, обслуживающие самолеты и морские суда. Учитывая их ведомственную специализацию, обусловленную в основном выбранными каналами доведения корректирующих поправок до потребителей, использование этих систем другим более широким кругом потребителей, проблематично. Поэтому, следует ожидать в дальнейшем появления намерений о создании и других дифференциальных подсистем в интересах, например, навигационного обеспечения наземных транспортных перевозок. Таким образом, в России можно отметить тенденцию к созданию сети ведомственных дифференциальных подсистем, ориентированных на обслуживание потребителей определенного класса. По принципу формирования корректирующей информации эти системы являются локальными и их рабочие зоны не перекрывают территорию России. Такое развитие дифференциальных подсистем по пути простого арифметического наращивания их числа трудно назвать экономически оправданным. Поэтому, после проведенных исследований был предложен другой путь развития дифференциальных подсистем.

Центральным научно-исследовательскими нститутом Военно-космических сил совместно с Координационным научно-информационным центром в 1994 году был разработан и предложен вариант построения расширенной дифференциальной подсистемы на территории России с использованием инфраструктуры российского наземного комплекса управления космическими аппаратами. Эта широкозонная дифференциальная подсистема может обслуживать практически всех основных потребителей системы ГЛОНАСС на территории России. Принципы функционирования подобной расширенной системы и алгоритмы формирования корректирующей информации были ранее разработаны и практически проверены с использованием измерительной информации, получаемой средствами наземного комплекса управления системой ГЛОНАСС, а также в процессе совместных экспериментальных работ ЦНИИ ВКС, КНИЦ ВКС и Российской морской навигационно-геодезической компании в районах Дальнего Востока и Юго-Восточной Азии. В результате анализа состояния с развитием дифференциальных подсистем в России и за рубежом в 1994 году стало ясно, что разобщенное развитие локальных и широкозонной дифференциальных подсистем не отвечает современным требованиям. Для координации развития отдельных дифференциальных подсистем в России и с целью их последующего объединения в единую (государственную) дифференциальную систему в 1994 году было предложено разработать Концепцию построения дифференциальных подсистем системы ГЛОНАСС, что было отражено в межведомственном решении «О проведении работ по созданию дифференциальных подсистем различных уровней и системы контроля целостности». Такая концепция была совместно разработана Военно-космическимисилами и Министерством транспорта и утверждена в марте 1996 года.

Краткое описание концепции единой дифференциальной системы

В концепции определено, что Российская дифференциальная система должна иметь трехуровневую иерархическую структуру, включающую широко-зонные ДПС, сеть региональных ДПС, локальные ДПС. В концепции отмечено, каждый уровень РДС представляет самостоятельную подсистему, способную автономно решать свои задачи по назначению. В совокупности они должны представлять единую систему, обеспечивающую любых потребителей точной навигационной информацией. Первый уровень структуры РДС составляет широкозонная ДПС. Она выполняет функции: — сбора и обработки информации станций наблюдения, ККС второго и третьего уровней с целью оперативного уточнения параметров региональных моделей ионосферы, эфемерид и ЧВП КА ГЛОНАСС, а также информации о целостности системы; — передачи необходимой информации широкозонной ДПС на ККС второго и третьего уровней или непосредственно потребителям; — взаимодействие со средствами НКУ ГЛОНАСС (Центром управления системой, сектором контроля навигационного поля). Требуемое количество ККС1-го уровня — 3…5. Каждая ККС1-го уровня является центром широкозонной ДПС. Точность определения координат по сигналам ККС1-го уровня составляет 5—10 м на удалениях от ККС 1500—2000 км. По нашему мнению, создание сети ККС1-го уровня возможно на базе существующей инфраструктуры российского наземного комплекса управления космическими аппаратами, включающую пункты управления космическими аппаратами, систему обмена данными, вычислительные средства. В пользу этого говорят следующие обстоятельства: — измерительные пункты и наземные объекты российского комплекса управления космическими аппаратами рассредоточены по территории всей России, что позволит создать в варианте расширенной дифференциальной подсистемы дифференциальное поле КНС ГЛОНАСС, перекрывающее территорию России и близлежащих стран; — в комплексе уже существует развитая инфраструктура, система сбора и обработки навигационной информации в интересах управления КА различного назначения; — при функционировании широкозональной ДПС наиболее просто организовать взаимодействие НКУ системы ГЛОНАСС и средств ДПС с целью формирования как корректирующей дифференциальной информации, так и сигналов предупреждения о нарушении целостности. При этом, в интересах широкозонной ДПС может быть также использована информация региональных и локальных ДПС.

Второй уровень составляют региональные (специализированные) ДПС, которые создаются для охвата определенных районов, экономически наиболее развитых, с большим количеством потребителей или обслуживания отдельных классов потребителей. Районами развертывания региональных ДПС могут являться области с интенсивным движением (воздушным, морским, автомобильным, железнодорожным), районы со сложными метеоро-логическими условиями, районы изыскательских работ и др. Точность определений координат по сигналам ККС2-го уровня — 3…10 метров на удалениях от ККС до 500 км.

Третий уровень — это локальные ДПС, развертываемые в отдельных районах для решения частных экономических, научных и оборонных задач. К локальным ДПС могут быть отнесены также системы для проведения специальных (эпизодических) ведомственных работ, в том числе системы с постпроцессорной обработкой наблюдений. Локальные ДПС могут быть прецизионными и обеспечивать дециметровую точность пространственных определений на расстояниях до нескольких десятков километров. Они также могут создаваться в мобильных вариантах исполнения. В состав ДПС3-го уровня возможно включение псевдоспутников.

Объединенное использование GPS и ГЛОНАСС

Характеристики GPS и ГЛОНАСС

Параметры

ГЛОНАСС

Число спутников 24 24
Число орбитальных плоскостей 6 3
Орбитальный наклон, градусов 55 65,8
Орбитальный радиус, км 26,560 25,510
Период, часы:минуты 11:58 11:16
Сигналы, МГц L1: 1575,42; L2: 1227,60 L1: (1602 + 0,5625n), L2: (1246 + 0,4375n), n = 1,2, …, 24
Частота кодирования, МГц C/A 1,023; P 10,23 C/A 0,511; P 5,11
Система координат WGS84 SGS85
Время UTC (USNO) UTC (SU)
Спецификация Точности (95%):
Горизонтальная точность, метров 100 100
Вертикальная точность, метров 140 150

Таблица суммирует особенности GPS и ГЛОНАСС, структуры их сигналов, и точностные данные. Обе системы совершенно подобны. Разногласия касаются шести орбитальных плоскостей для GPS против трех для ГЛОНАСС, с кодовым разделением против частотного мультиплексирования сигналов выбора времени. Так как ГЛОНАСС имеет больший орбитальный наклон, то он дает лучшие результаты в полярных областях.

Как показано в таблице, каждая система передает сигналы на двух частотах. Только C/A код любой из систем доступен для гражданского использования. В ГЛОНАСС отсутствует преднамеренное понижение точности за счет SA. Фактическая точность любой из систем значительно лучше указанной и составляет порядка 30 метров.

США гарантирует неизменность структуры сигналов в течении 10 лет, Россия — в течении 15 лет, что означает неизменность схем приемников. Срок эксплуатации спутников GPS составляет 7 лет, ГЛОНАСС — 5. Из-за финансовых трудностей поддержание работоспособности российской системы остается сложной задачей.

GPS и ГЛОНАСС — автономные системы, каждая из которых имеет собственный временной стандарт. Стандарт GPS — универсальное кодированное время (UTC) американский эталон которого находится в Военно-морской Лаборатории США. Масштаб времени, принятый ГЛОНАСС — UTC (SU), национальный эталон Советского Союза. Разногласие между этими эталонами составляет в настоящее время 2 секунды, но стабильность этой разницы не гарантируется. Так как требуется определение и точное измерение времени, пользователь должен быть способен определить мгновенную разность между двумя стандартами времени. Задачу можно свести к оценке местоположения с помощью двух наборов псевдодиапазонов, каждый из которых содержит неизвестное смещение времени. Это приводит к увеличению количества неизвестных до 5. В самом крайнем случае можно решать задачу без дополнительного неизвестного, жертвуя измерением диапазона между эталонами. Но поскольку объединенное использование GPS и ГЛОНАСС имеет избыточное количество информации, такие ситуации крайне редки.

Две системы выражают положения их спутников и, следовательно, их пользователей в различных геоцентрических системах координаты. GPS основан на системе координат WGS84; ГЛОНАСС — на SGS85. Объединение систем координат требует оценки преобразования между ними. Экспериментальные результаты показывают, что координаты точек на земле, выраженные в различных системах координат, отличаются не больше, чем на 20 метров.

Малый процент (0,4%) пользователей GPS-21 видит менее четырех спутников. В случае объединенного использования систем GPS + ГЛОНАСС все пользователи видели бы по крайней мере восемь спутников одновременно (напомним, что для оценки местоположения требуются минимум четыре спутника), а 99% пользователей видят 10 и большее количество спутников, и почти половина видят четырнадцать и больше. Видно, что некоторые пользователи не способны оценить свое положение, используя GPS или ГЛОНАСС отдельно. С объединенной совокупностью спутников все пользователи имеют избыточные наборы измерений. В приведенной гистограмме учтены только спутники, которые расположены значительно выше горизонта (> 7,5 градусов).

Точность определения местоположения GPS, ГЛОНАСС и при их совместном использовании


Горизонтальная ошибка

Ошибка по высоте

GPS (без SA) 7 18 34
GPS (c SA) 27 72 135
ГЛОНАСС 10 26 45
ГЛОНАСС+GPS 9 20 38

Идея определять местонахождение предметов с помощью искусственных спутников Земли пришла в голову американцам еще в 1950-х годах. Однако подтолкнул ученых советский спутник.

Американский физик Ричард Кершнер понял, что, если знать координаты на земле, то можно узнать скорость советского космического аппарата. С этого и началось развертывание программы, которая впоследствии стала называться GPS – система глобального позиционирования. В 1974 году на орбиту выведен первый американский спутник. Первоначально этот проект предназначался для военных ведомств.

Как работает геопозиционирование

Рассмотрим особенности геопозиционирования на примере обычного трекера. До момента активации прибор находится в режиме ожидания, модуль GPS ГЛОНАСС выключен. Такая опция предусмотрена для сбережения заряда аккумулятора и увеличения периода автономной работы устройства.

Во время активации запускаются сразу три процесса:

  • приемник GPS начинает анализировать координаты по встроенной программе. Если в этот момент обнаруживается три спутника, система считается недоступной. То же самое происходит и с ГЛОНАСС;
  • если трекер (например, навигатор) поддерживает модули двух систем, то прибор анализирует сведения, полученные от обоих спутников. Затем считывает те сведения, которые считает достоверными;
  • если в нужный момент сигналы обеих систем недоступны, то включается GSM. Но данные, полученные таким способом, будут неточными.

Поэтому, задаваясь вопросом: что выбрать – GPS или ГЛОНАСС, выбирайте оборудование с поддержкой двух спутниковых систем. Недостатки работы одной из них перекроет другая. Таким образом, приемнику доступны сигналы одновременно с 18-20 спутников. Это обеспечивает хороший уровень и стабильность сигнала, минимизирует погрешности.

Стоимость сервиса GPS и ГЛОНАСС-мониторинга

На окончательную стоимость оборудования влияют несколько факторов:

  • страна-производитель;
  • какие системы навигации используются;
  • качество материалов и дополнительные функции;
  • обслуживание ПО.

Самый бюджетный вариант – оборудование китайского производства. Цена начинается от 1000 руб. Однако качественного обслуживания не стоит ожидать. За такие деньги владелец получит ограниченный функционал и недолгий срок службы.

Следующий сегмент оборудования – европейские производители. Сумма стартует от 5000 руб., но взамен покупатель получает стабильное программное обеспечение и расширенные функции.

Российские производители предлагают вполне рентабельное оснащение за разумные деньги. Цены на отечественные трекеры начинаются с 2500 руб.

Отдельная статья расходов – абонентская плата и оплата дополнительных услуг. Ежемесячная плата для отечественных компаний – 400 руб. Европейские изготовители открывают добавочные опции за дополнительную “монету”.

Придется заплатить и за монтаж оборудования. В среднем, установка в сервисном центре обойдется в 1500 рублей.

Преимущества и недостатки ГЛОНАСС и GPS

Теперь рассмотрим плюсы и минусы каждой системы.

Сателлиты GPS почти не появляются в южном полушарии, в то время как ГЛОНАСС передает сигнал в Москву, Швецию и Норвегию. Четкость сигнала выше у американской системы благодаря 27 активным спутникам. Различие в погрешности “играет на руку” спутникам США. Для сравнения: неточность ГЛОНАСС – 2,8 м, у GPS – 1,8 м. Однако это усредненный показатель. Чистота вычислений зависит от положения спутников на орбите. В некоторых случаях аппараты выстраиваются так, что степень просчета увеличивается. Такая ситуация возникает у обеих систем.

Резюме

Так что же победит в сравнении GPS vs ГЛОНАСС? Строго говоря, гражданским пользователям неважно, какие спутники использует их навигационная техника. Обе системы бесплатны и находятся в открытом доступе. Разумным решением разработчиков станет взаимная интеграция систем. В таком случае в “поле зрения” трекера будет находиться необходимое количество аппаратов даже при неблагоприятных погодных условиях и помехах в виде высотных зданий.

GPS и ГЛОНАСС. Видео по теме

Спутниковой навигацией пользуются водители, велосипедисты, туристы – даже любители утренних пробежек отслеживают собственный маршрут при помощи спутников. Вместо того чтобы расспрашивать прохожих, как найти нужный дом, большинство предпочитают достать смартфон и задать этот вопрос ГЛОНАСС или GPS. Несмотря на то, что модули спутниковой навигации установлены в каждом смартфоне и в большинстве спортивных часов, только один человек из десяти понимает, как работает эта система и как в море девайсов с функциями GPS/ГЛОНАСС найти подходящий.

Как устроена спутниковая навигационная система

Аббревиатура GPS расшифровывается как Global Positioning System: «система глобального позиционирования», если переводить дословно. Идея использовать спутники на околоземной орбите для определения координат наземных объектов появилась в 1950-е, сразу после того, как Советский Союз запустил первый искусственный спутник. Американские ученые отслеживали спутниковый сигнал и обнаружили, что его частота меняется, когда спутник приближается или отдаляется. Поэтому, зная свои точные координаты на Земле, можно вычислить и точное расположение спутника. Это наблюдение и дало толчок для разработки глобальной системы расчета координат.

Первоначально открытием заинтересовался флот – разработку начала военно-морская лаборатория, но со временем было решено создать единую систему для всех вооруженных сил. Первый спутник GPS вывели на орбиту 1978-м. Сейчас сигналы передают около тридцати спутников. Когда навигационная система заработала, военные ведомства США сделали подарок всем жителям планеты – открыли свободный доступ к спутникам, так что каждый может пользоваться Global Positioning System бесплатно, был бы приемник.

Вслед за американцами Роскосмос создал свою систему: первый спутник ГЛОНАСС вышел на орбиту в 1982 году. ГЛОНАСС – Глобальная навигационная спутниковая система, работающая по тому же принципу, что и американская. Сейчас на орбите находятся 24 российских спутника, которые обеспечивают координирование.

Чтобы воспользоваться одной из систем, а лучше двумя одновременно, нужен приемник, который будет получать сигналы от спутников, а также компьютер для расшифровки этих сигналов: местоположение объекта вычисляется, исходя из интервалов между полученными сигналами. Точность вычислений – плюс-минус 5 м.

Чем больше спутников «видит» устройство, тем больше информации может предоставить. Для определения координат навигатору достаточно увидеть всего два спутника, но если он запеленгует хотя бы четыре спутника, девайс сможет сообщить, например, скорость передвижения объекта. Поэтому современные навигационные устройства считывают все больше параметров:

  • Географические координаты объекта.
  • Скорость его передвижения.
  • Высоту над уровнем моря.

Какие могут возникнуть погрешности в работе GPS/ГЛОНАСС

Спутниковая навигация хороша тем, что доступна круглосуточно из любой точки планеты. Где бы вы ни находились, если у вас есть приемник – вы сможете определить координаты и построить маршрут. Однако на практике сигнал спутников могут глушить физические препятствия или погодные катаклизмы: если вы проезжаете подземный туннель, а сверху к тому же бушует шторм, сигнал может не «добить» до приемника.

Эту проблему решили за счет технологии A-GPS: она предполагает, что приемник обращается через альтернативные каналы связи к серверу. Тот, в свою очередь, использует данные, полученные от спутников. Благодаря этому можно пользоваться навигационной системой в помещениях, туннелях, в непогоду. Технология A-GPS рассчитана на смартфоны и прочие персональные устройства, поэтому, выбирая навигатор или смартфон, уточняйте, поддерживает ли он этот стандарт. Так вы сможете быть уверенными, что устройство не подведет в ответственный момент.

Владельцы смартфонов иногда жалуются, что навигатор работает не точно или периодически «отключается», не определяет координаты. Как правило, это связано с тем, что в большинстве смартфонов функция GPS/ГЛОНАСС по умолчанию отключена. Для расчетов координат устройство использует сотовые вышки или беспроводной интернет. Проблема решается настройкой смартфона, активацией нужного способа определения координат. Также может потребоваться калибровка компаса или сброс настроек навигатора.

Виды навигаторов

  • Автомобильные. Навигационные система, завязанная на спутниках ГЛОНАСС или их американских аналогах, может быть частью бортового компьютера авто, но чаще покупают отдельные устройства. Они не только определяют координаты машины и позволяют без проблем добраться из пункта А в пункт Б, но также защищают от угона. Даже если злоумышленники угонят машину, ее можно будет отследить по маячку. Плюс специальных устройств для авто еще и в том, что они предусматривают установку антенны – за счет антенны можно усилить ГЛОНАСС-сигнал.
  • Туристические. Если в автомобильный навигатор можно установить специальный набор карт, то к туристическим устройствам предъявляются более строгие требования: современные модели допускают использование расширенного набора карт. Однако самый простой туристический девайс – это только приемник сигнала с простейшим компьютером. Он может даже не отмечать координаты на карте, и тогда потребуется бумажная карта с навигационной сеткой. Впрочем, сейчас такие устройства покупают только из соображений экономии.
  • Смартфоны, планшеты с GPS/ГЛОНАСС-приемником. Смартфоны также позволяют загрузить расширенный набор карт. Их можно использовать, как автомобильные и туристические навигаторы, главное – установить приложение и загрузить необходимые карты. Многие из полезных навигационных программ – бесплатные, но за некоторые нужно заплатить небольшую сумму.

Навигационные программы для смартфонов

Одна из самых простых программ, рассчитанных на тех, кто не хочет вникать в функционал: MapsWithMe. Она позволяет загрузить из сети карту нужного региона, чтобы затем пользоваться ею, даже если соединения с интернетом не будет. Программа покажет местоположение на карте, отыщет отмеченные на этой карте объекты – их можно сохранять в закладки и пользоваться потом быстрым поиском. На этом функционал исчерпывается. Программа использует только векторные карты – другие форматы загрузить нельзя.

Владельцы устройств на Android могут воспользоваться программой OsmAnd. Она подходит водителям и пешеходным туристам, поскольку позволяет автоматически проложить маршрут по автодорогам или горным тропинкам. ГЛОНАСС-навигатор будет вести вас по маршруту голосовыми командами. Кроме векторных карт, можно использовать растровые, а также отмечать путевые точки и записывать треки.

Ближайшая альтернатива OsmAnd – приложение Locus Map. Оно подойдет для пешеходных туристов, поскольку напоминает классическое навигационное устройство для туристов, какие были в ходу до появления смартфонов. Использует и векторные, и растровые карты.

Туристические устройства

Смартфоны и планшеты могут заменить специальное GPS/ГЛОНАСС-устройство для туризма, но у такого решения есть свои недостатки. С одной стороны, если есть смартфон, не нужно покупать никаких дополнительных девайсов. На большом ярком экране легко работать с картой, выбор приложений широкийо – мы указали всего несколько программ, охватить все предложения невозможно. Но у смартфона есть и недостатки:

  • Быстро разряжается. В среднем устройство работает сутки, а в режиме постоянного поиска координат – и того меньше.
  • Требует бережного обращения. Конечно, существуют защищенные смартфоны, но кроме того, что они дорогие, надежность такого смартфона все равно не сравнится со специальным туристическим ГЛОНАСС-устройством. Оно может быть полностью водонепроницаемым.

Для многодневных походов по дикой местности разработаны специализированные устройства, во влагозащищенных корпусах и с мощными аккумуляторами. Однако при выборе такого прибора важно уточнять, чтобы он поддерживал и векторные, и растровые карты. Растровая карта – это изображение, привязанное к координатам. Вы можете взять бумажную карту, отсканировать ее, связать с координатами ГЛОНАСС – и получится растровая карта. Векторные карты – не картинка, но набор объектов, которые программа размещает на изображении. Система позволяет запустить поиск по объектам, но самостоятельно создать подобную схему сложно.


Close