Впервые принцип ПЗС с идеей сохранять и затем считывать электронные заряды был разработан двумя инженерами корпорации BELL в конце 60-х годов в ходе поиска новых типов памяти для ЭВМ, способных заменить память на ферритовых кольцах (да – да, была и такая память). Эта идея оказалась бесперспективной, но способность кремния реагировать на видимый спектр излучения была замечена и мысль использовать этот принцип для обработки изображений получила своё развитие.

Начнем с расшифровки термина.

Аббревиатура ПЗС означает "Приборы с Зарядовой Связью" - этот термин образовался от английского "Сharge-Сoupled Devices" (CCD).

Данный тип приборов в настоящее время имеет очень широкий круг применений в самых различных оптоэлектронных устройствах для регистрации изображения. В быту это цифровые фотоаппараты, видеокамеры, различные сканеры.

Что же отличает ПЗС-приемник от обычного полупроводникового фотодиода, имеющего светочувствительную площадку и два электрических контакта для съема электрического сигнала?

Во-первых , таких светочувствительных площадок (часто их называют пикселами - элементами, принимающими свет и преобразующими его в электрические заряды) в ПЗС-приемнике очень много, от нескольких тысяч до нескольких сотен тысяч и даже нескольких миллионов. Размеры отдельных пикселов одинаковы и могут быть от единиц до десятков микрон. Пиксели могут быть выстроены в один ряд - тогда приемник называется ПЗС-линейкой, или ровными рядами заполнять участок поверхности - тогда приемник называют ПЗС-матрицей.

Раcположение светоприемных элементов (прямоугольники синего цвета) в ПЗС-линейке и ПЗС-матрице.

Во-вторых , в ПЗС-приёмнике, внешне похожем на обычную микросхему, нет огромного числа электрических контактов для вывода электрических сигналов, которые, казалось бы, должны идти от каждого светоприемного элемента. Зато к ПЗС-приемнику подключается электронная схема, которая позволяет извлекать с каждого светочувствительного элемента электрический сигнал, пропорциональный его засветке.

Действие ПЗС можно описать следующим образом: каждый светочувствительный элемент - пиксель - работает как копилка для электронов. Электроны возникают в пикселях под действием света, пришедшего от источника. В течение заданного интервала времени каждый пиксель постепенно заполняется электронами пропорционально количеству попавшего в него света, как ведро, выставленное на улицу во время дождя. По окончании этого времени электрические заряды, накопленные каждым пикселем, по очереди передаются на "выход" прибора и измеряются. Все это возможно за счет определенной структуры кристалла, где размещаются светочувствительные элементы, и электрической схемы управления.

Практически точно так же работает и ПЗС-матрица. После экспонирования (засветки проецируемым изображением) электронная схема управления прибором подаёт на него сложный набор импульсных напряжений, которые начинают сдвигать столбцы с накопленными в пикселях электронами к краю матрицы, где находится аналогичный измерительный ПЗС-регистр, заряды в котором сдвигаются уже в перпендикулярном направлении и попадают на измерительный элемент, создавая в нем сигналы, пропорциональные отдельным зарядам. Таким образом, для каждого последующего момента времени мы можем получить значение накопленного заряда и сообразить, какому пикселю на матрице (номер строки и номер столбца) он соответствует.

Кратко о физике процесса.

Для начала отметим, что ПЗС относятся к изделиям так называемой функциональной электроники, Их нельзя представить как совокупность отдельных радиоэлементов - транзисторов, сопротивлений и конденсаторов. В основе работы лежит принцип зарядовой связи. Принцип зарядовой связи использует два известных из электростатики положения:

  1. одноимённые заряды отталкиваются,
  2. заряды стремятся расположиться там, где их потенциальная энергия минимальна. Т.е. грубо – «рыба ищет там, где глубже».

Для начала представим себе МОП-конденсатор (МОП - сокращение от слов металл-окисел- полупроводник). Это то, что остаётся от МОП-транзистора, если убрать из него сток и исток, то есть просто электрод, отделённый от кремния слоем диэлектрика. Для определённости будем считать, что полупроводник - p-типа, т. е. концентрация дырок в равновесных условиях много (на несколько порядков) больше, чем электронов. В электрофизике «дыркой» называют заряд, обратный заряду электрона, т.е. положительный заряд.

Что будет, если на такой электрод (его называют затвором) подать положительный потенциал? Электрическое поле, создаваемое затвором, проникая в кремний сквозь диэлектрик, отталкивает подвижные дырки; возникает обеднённая область - некоторый объём кремния, свободный от основных носителей. При параметрах полупроводниковых подложек, типичных для ПЗС, глубина этой области составляет около 5 мкм. Напротив, электроны, возникшие здесь под действием света, притянутся к затвору и будут накапливаться на границе раздела окисел-кремний непосредственно под затвором, т. е. сваливаются в потенциальную яму (рис. 1).


Рис. 1
Образование потенциальной ямы при приложении напряжения к затвору

При этом электроны по мере накопления в яме частично нейтрализуют электрическое поле, создаваемое в полупроводнике затвором, и в конце концов могут полностью его скомпенсировать, так что всё электрическое поле будет падать только на диэлектрике, и всё вернётся в исходное состояние - за тем исключением, что на границе раздела образуется тонкий слой электронов.

Пусть теперь рядом с затвором расположен ещё один затвор, и на него тоже подан положительный потенциал, причём больший, чем на первый (рис. 2). Если только затворы расположены достаточно близко, их потенциальные ямы объединяются, и электроны, находящиеся в одной потенциальной яме, перемещаются в соседнюю, если она «глубже».
Рис. 2
Перекрытие потенциальных ям двух близко расположенных затворов. Заряд перетекает в то место, где потенциальная яма глубже.

Теперь уже должно быть ясно, что если мы имеем цепочку затворов, то можно, подавая на них соответствующие управляющие напряжения, передавать локализованный зарядовый пакет вдоль такой структуры. Замечательное свойство ПЗС - свойство самосканирования - состоит в том, что для управления цепочкой затворов любой длины достаточно всего трёх тактовых шин. (Термин шина в электронике - проводник электрического тока, соединящиий однотипные элементы, тактовая шина - проводники по которым передается смещенное по фазе напряжение.) Действительно, для передачи зарядовых пакетов необходимо и достаточно трёх электродов: одного передающего, одного принимающего и одного изолирующего, разделяющего пары принимающих и передающих друг от друга, причём одноимённые электроды таких троек могут быть соединены друг с другом в единую тактовую шину, требующую лишь одного внешнего вывода (рис. 3).


Рис. 3
Простейший трёхфазный ПЗС-регистр.
Заряд в каждой потенциальной яме разный.

Это и есть простейший трёхфазный регистр сдвига на ПЗС. Тактовые диаграммы работы такого регистра показаны на рис. 4.




Рис. 4
Тактовые диаграммы управления трёхфазным регистром -- это три меандра, сдвинутые на 120 градусов.
При смене потенциалов происходит передвижение зарядов.

Видно, что для его нормальной работы в каждый момент времени, по крайней мере, на одной тактовой шине должен присутствовать высокий потенциал, и, по крайней мере, на одной - низкий потенциал (потенциал барьера). При повышении потенциала на одной шине и понижении его на другой (предыдущей) происходит одновременная передача всех зарядовых пакетов под соседние затворы, и за полный цикл (один такт на каждой фазной шине) происходит передача (сдвиг) зарядовых пакетов на один элемент регистра.

Для локализации зарядовых пакетов в поперечном направлении формируются так называемые стоп-каналы - узкие полоски с повышенной концентрацией основной легирующей примеси, идущие вдоль канала переноса (рис. 5).


Рис. 5.
Вид на регистр "сверху".
Канал переноса в боковом направлении ограничивается стоп-каналами.

Дело в том, что от концентрации легирующей примеси зависит, при каком конкретно напряжении на затворе под ним образуется обеднённая область (этот параметр есть не что иное, как пороговое напряжение МОП-структуры). Из интуитивных соображений понятно, что чем больше концентрация примеси, т. е. чем больше дырок в полупроводнике, тем труднее их отогнать вглубь, т. е. тем выше пороговое напряжение или же, при одном напряжении, тем ниже потенциал в потенциальной яме.

Проблемы

Если при производстве цифровых приборов разброс параметров по пластине может достигать нескольких крат без заметного влияния на параметры получаемых приборов (поскольку работа идёт с дискретными уровнями напряжения), то в ПЗС изменение, скажем, концентрации легирующей примеси на 10% уже заметно на изображении. Свои проблемы добавляет и размер кристалла, и невозможность резервирования, как в БИС памяти, так что дефектные участки приводят к негодности всего кристалла.

Итог

Разные пикселы ПЗС матрицы технологически имеют разную чувствительность к свету и эту разницу необходимо корректировать.

В цифровых КМА эта коррекция называется системой Auto Gain Control (AGC)

Как работает система AGC

Для простоты рассмотрения не будем брать что-то конкретное. Предположим, что на выходе АЦП узла ПЗС есть некие потенциальные уровни. Предположим, что 60 - средний уровень белого.



  1. Для каждого пикселя линейки ПЗС считывается значение при освещении его эталонным белым светом (а в более серьезных аппаратах – и считывание «уровня черного»).
  2. Значение сравнивается с опорным уровнем (например, средним).
  3. Разница между выходным значением и опорным уровнем запоминается для каждого пиксела.
  4. В дальнейшем, при сканировании эта разница компенсируется для каждого пиксела.

Инициализация системы AGC производится каждый раз при инициализации системы сканера. Наверное, вы замечали, что при включении машины через какое-то время каретка сканера начинает совершать поступательно-возвратные движения (елозить у ч/б полоски). Это и есть процесс инициализации системы AGC. Система так же учитывает и состояние лампы (старение).

Так же Вы наверняка обращали внимание, что малые МФУ, снабженные цветным сканером, «зажигают лампу» тремя цветами по очереди: красным, синим и зеленым. Затем только подсветка оригинала зажигается белым. Это сделано для лучшей коррекции чувствительности матрицы раздельно по каналам RGB.

Тест полутонов (SHADING TEST) позволяет инициировать эту процедуру по желанию инженера и привести значения корректировки к реальным условиям.

Попробуем рассмотреть все это на реальной, «боевой» машине. За основу возьмем широкоизвестный и популярный аппарат SAMSUNG SCX-4521 (Xerox Pe 220).

Необходимо отметить, что в нашем случае CCD становится CIS (Contact Image Sensor), но суть происходящего в корне от этого не меняется. Просто в качестве источника света используются линейки светодиодов.

Итак:

Сигнал изображения от CIS имеет уровень около 1,2 В и поступает на АЦП-секцию (САЦП) контроллера аппарата (САЦП). После САЦП аналоговый сигнал CIS будет преобразован в 8-битовый цифровой сигнал.

Процессор обработки изображения в САЦП прежде всего использует функцию коррекции тона, а затем функцию гамма-коррекции. После этого данные подаются на различные модули в соответствии с режимом работы. В режиме Text данные изображения поступают на модуль LAT, в режиме Photo данные изображения поступают на модуль "Error Diffusion", в режиме PC-Scan данные изображения поступают прямо на персональный компьютер через доступ DMA.

Перед осуществлением тестирования положите на стекло экспонирования несколько чистых листов белой бумаги. Само собой разумеется, что оптика, ч/б полоса и вообще узел сканера изнутри должны быть предварительно «вылизаны»

  1. Выберите в TECH MODE
  2. Нажмите кнопку ENTER (Ввод) для сканирования изображения.
  3. После сканирования будет распечатан "CIS SHADING PROFILE" (профиль полутонов CIS). Пример такого листа приведен ниже. Не обязательно, что он должен быть копией Вашего результата, но близок по изображению.
  4. Если распечатанное изображение сильно отличается от изображения, показанного на рисунке, значит CIS неисправен. Обратите внимание – внизу листа отчета написано “Results: OK”. Это означает, что система серьезных претензий к модулю CIS не имеет. В противном случае будут даны результаты ошибок.

Пример распечатки профиля:

Удачи Вам!!

За основу взяты материалы статей и лекций преподавателей СПбГУ (ЛГУ), СПбЭТУ (ЛЭТИ) и Axl. Спасибо им.

Материал подготовлен В. Шеленбергом

После прочтения предыдущей части у нашего читателя могло сложиться впечатление, что ПЗС-матрица – это некий «чёрный ящик», выдающий «электронный негатив» после того, как на его регистрирующую поверхность было спроецировано созданное объективом световое изображение, и что на качество снимка влияет исключительно размер сенсора.

Той же точки зрения придерживаются продавцы цифровой фототехники, мягко, но настойчиво подталкивающие потенциального покупателя к приобретению модели с как можно более крупногабаритной матрицей, даже если объективных причин для такой покупки нет. Ещё чаще в качестве «наживки» для клиента выступают разного рода «уникальные разработки», использованные при создании матрицы, которые, как ни странно, никем из прочих производителей не применяются.

Начинающему фотолюбителю трудно отличить рекламные обещания от действительно эффективных инженерных находок. В настоящей статье будет сделана попытка «отделить зерна от плевел», однако для начала необходимо ознакомиться с базовыми определениями цифровой фотографии.

Как фотон становится электроном

В приборах с зарядовой связью преобразование фотона в электрон производится в результате внутреннего фотоэффекта: поглощения светового кванта кристаллической решёткой полупроводника с выделением носителей заряда. Это может быть либо пара «электрон + дырка», либо единичный носитель заряда – последнее происходит при использовании донорных либо акцепторных примесей в полупроводнике. Очевидно, что образовавшиеся носители заряда до момента считывания необходимо как-то сохранить.

Для этого основной материал ПЗС-матрицы – кремниевая подложка p-типа – оснащается каналами из полупроводника n-типа, над которыми из поликристаллического кремния изготавливаются прозрачные для фотонов электроды. После подачи на такой электрод электрического потенциала в обеднённой зоне под каналом n-типа создаётся потенциальная яма, назначение которой – хранить заряд, «добываемый» посредством внутреннего фотоэффекта. Чем больше фотонов упадёт на ПЗС-элемент (пиксель) и превратится в электроны, тем выше будет заряд, накопленный ямой.

Элемент ПЗС-матрицы

Сечение пикселя ПЗС-матрицы

Чтобы получить «электронный негатив», необходимо считать заряд каждой потенциальной ямы матрицы. Данный заряд получил название фототок, его значение довольно мало и после считывания требует обязательного усиления.

Считывание заряда производится устройством, подключённым к самой крайней строке матрицы, которое называется последовательным регистром сдвига. Данный регистр представляет собой строку из ПЗС-элементов, заряды которой считываются поочерёдно. При считывании заряда используется способность ПЗС-элементов к перемещению зарядов потенциальных ям – собственно, именно поэтому данные устройства называются приборами с зарядовой связью. Для этого используются электроды переноса (transfer gate), расположенные в промежутке между ПСЗ-элементами. На эти электроды подаются потенциалы, «выманивающие» заряд из одной потенциальной ямы и передающие его в другую.

При синхронной подаче потенциала на электроды переноса обеспечивается одновременный перенос всех зарядов строки справа налево (или слева направо) за один рабочий цикл. Оказавшийся «лишним» заряд поступает на выход ПЗС-матрицы. Таким образом, последовательный регистр сдвига преобразовывает заряды, поступающие на его вход в виде параллельных «цепочек», в последовательность электрических импульсов разной величины на выходе. Чтобы подать эти параллельные «цепочки» на вход последовательного регистра, опять-таки используется регистр сдвига, но на этот раз параллельный.

ПЗС-матрица

Сечение пикселя ПЗС-матрицы

Фактически параллельным регистром является сама ПЗС-матрица, создающая посредством совокупности фототоков электронный «слепок» светового изображения. Матрица представляет собой множество последовательных регистров, называемых столбцами и синхронизированных между собой. В результате за рабочий цикл происходит синхронное «сползание» фототоков вниз, а оказавшиеся «лишними» заряды нижней строки матрицы поступают на вход последовательного регистра.

Как следует из вышесказанного, необходимо достаточно большое количество управляющих микросхем, синхронизирующих подачу потенциалов как на параллельный, так и на последовательный регистры сдвига. Очевидно, что последовательный регистр должен полностью освободиться от зарядов в промежутке между тактами параллельного регистра, поэтому требуется микросхема, синхронизирующая между собой оба регистра.

Из чего состоит пиксель

По указанной выше схеме работает так называемая полнокадровая ПЗС-матрица (full-frame CCD-matrix), её режим работы накладывает некоторое ограничение на конструкцию камеры: если в процессе считывания фототоков экспонирование не прекращается, «лишний» заряд, генерируемый попадающими на пиксели фотонами, «размазывается» по кадру. Поэтому необходим механический затвор, перекрывающий поступление света к сенсору на время, необходимое для считывания зарядов всех пикселей. Очевидно, что такая схема считывания фототоков не позволяет формировать видеопоток на выходе с матрицы, поэтому применяется она только в фототехнике.

Впрочем, избыточный заряд может накопиться в потенциальной яме и при фотосъёмке – например, при слишком «длинной» выдержке. «Лишние» электроны стремятся «растечься» по соседним пикселям, что на снимке отображается в виде белых пятен, размер которых связан с величиной переполнения. Данный эффект именуется блюмингом (от английского blooming – «размывание»). Борьба с блюмингом осуществляется посредством электронного дренажа (drain) – отвода из потенциальной ямы избыточного заряда. Существует два основных вида дренажа: вертикальный (Vertical Overflow Drain, VOD) и боковой (Lateral Overflow Drain, LOD).

Боковой дренаж ПЗС-матрицы

Схема бокового дренажа

Для реализации вертикального дренажа на подложку ЭОП подаётся потенциал, который при переполнении глубины потенциальной ямы обеспечивает истечение избыточных электронов сквозь подложку. Основной минус такой схемы – уменьшение глубины потенциальной ямы, в результате чего сужается динамический диапазон. А в матрицах с обратной засветкой (в них фотоны проникают внутрь сенсора не сквозь электрод потенциальной ямы, а со стороны подложки) вертикальный дренаж вообще неприменим.

Боковой дренаж осуществляется при помощи специальных «дренажных канавок», в которые «стекают» избыточные электроны. Для формирования этих канавок прокладываются специальные электроды, на которые подаётся потенциал, формирующий дренажную систему. Другие электроды создают барьер, препятствующий преждевременному «бегству» электронов из потенциальной ямы.

Как следует из описания, при боковом дренаже глубина потенциальной ямы не уменьшается, однако при этом урезается площадь светочувствительной области пикселя. Тем не менее без дренажа обойтись нельзя, так как блюминг искажает снимок больше, чем все остальные виды помех. Поэтому производители вынуждены идти на усложнение конструкции матриц.

Таким образом, «обвязка» любого пикселя состоит как минимум из электродов переноса заряда и из компонентов дренажной системы. Однако большинство ПЗС-матриц отличается более сложной структурой своих элементов.

Оптика для пикселя

ПЗС-матрицы, используемые в видеокамерах и в большинстве любительских цифровых фотоаппаратов, обеспечивают непрерывный поток импульсов на своём выходе, при этом перекрытие оптического тракта не происходит. Чтобы при этом не происходило «смазывание» изображения, используются ПЗС-матрицы с буферизацией столбцов (interline CCD-matrix).

ПЗС-матрица с буферизацией столбцов

Структура матрицы с буферизацией столбцов

В таких сенсорах рядом с каждым столбцом (который представляет собой последовательный регистр сдвига) располагается буферный столбец (тоже последовательный регистр сдвига), состоящий из ПЗС-элементов, покрытых непрозрачными полосками (чаще металлическими). Совокупность буферных столбцов составляет буферный параллельный регистр, причём столбцы данного регистра «перемешаны» с регистрирующими свет столбцами.

За один рабочий цикл светочувствительный параллельный регистр сдвига отдаёт все свои фототоки буферному параллельному регистру посредством «сдвига по горизонтали» зарядов, после чего светочувствительная часть снова готова к экспонированию. Затем идёт построчный «сдвиг по вертикали» зарядов буферного параллельного регистра, нижняя строка которого является входом последовательного регистра сдвига матрицы.

Очевидно, что перенос заряда матрицы в буферный параллельный регистр сдвига занимает малый интервал времени и перекрывать световой поток механическим затвором нет необходимости – ямы не успеют переполниться. С другой стороны, необходимое время экспонирования, как правило, сравнимо со временем считывания всего буферного параллельного регистра. За счёт этого интервал между экспонированием можно довести до минимума – в результате видеосигнал в современных видеокамерах формируется с частотой от 30 кадров в секунду и выше.

В свою очередь, сенсоры с буферизацией столбцов подразделяются на две категории. При считывании за один такт всех строк можно говорить о матрице с прогрессивной развёрткой (progressive scan). Когда за первый такт считываются нечётные строки, а за второй – чётные (или наоборот), речь идёт о матрице с чересстрочной развёрткой (interlace scan). Кстати, за счёт сходства звучания английских терминов «матрица с буферизацией столбцов» (interlined) и «чересстрочная матрица» (interlaced) в отечественной литературе сенсоры с буферизацией строк нередко ошибочно называют чересстрочными.

Как ни странно, «размазывание» заряда (smear) происходит и в матрицах с буферизацией столбцов. Вызвано это частичным перетеканием электронов из потенциальной ямы светочувствительного ПЗС-элемента в потенциальную яму расположенного рядом буферного элемента. Особенно часто это происходит при близких к максимальному уровнях фототока, вызванных очень высокой освещённостью пикселя. В результате на снимке вверх и вниз от этой яркой точки протягивается светлая полоса, которая портит кадр.

Для противодействия этому явлению увеличивают расстояние между светочувствительным и буферным ПЗС-элементами. В результате усложняется обмен зарядом и увеличивается затрачиваемое на это время, однако искажения кадра, вызываемые «размазыванием», всё же слишком заметны, чтобы ими пренебрегать.

Буферизация столбцов позволяет также реализовать электронный затвор, с помощью которого можно отказаться от механического перекрытия светового потока. С помощью электронного затвора можно получить сверхмалые (до 1/10000 секунды) значения выдержки, недостижимые для механического затвора. Эта возможность особенно актуальна при фотографировании спортивных состязаний, природных явлений и т. п.

Для реализации электронного затвора обязательно необходим антиблюминговый дренаж. При очень коротких выдержках, которые по длительности меньше, чем время переноса заряда из потенциальной ямы светочувствительного ПЗС-элемента в потенциальную яму буферного, дренаж играет роль «отсечки». Эта «отсечка» предотвращает попадание в яму буферного ПЗС-элемента электронов, возникших в яме светочувствительного элемента по истечении времени выдержки.

Структура пикселей – с микролинзой и обычного

Степень концентрации светового потока при прохождении сквозь микролинзу зависит от технологического уровня производителя матрицы. Встречаются довольно сложные конструкции, обеспечивающие максимальную эффективность этим миниатюрным устройствам.

Однако при использовании микролинз значительно сокращается вероятность того, что лучи света, падающие под большим углом к нормали, проникнут в светочувствительную область. А при большом отверстии диафрагмы процент таких лучей довольно велик. Таким образом, уменьшается интенсивность воздействия светового потока на матрицу, то есть основной эффект, ради которого открывают диафрагму.

Впрочем, вреда от таких лучей ничуть не меньше, чем пользы. Дело в том, что, проникая в кремний под большим углом, фотон может войти в матрицу на поверхности одного пикселя, а выбить электрон в теле другого. Это приводит к искажению изображения. Поэтому, чтобы ослабить влияние таких «бронебойных» фотонов, поверхность матрицы, за исключением светочувствительных областей, покрывается непрозрачной маской (чаще металлической), что дополнительно усложняет конструкцию матриц.

Кроме того, микролинзы вносят определённые искажения в регистрируемое изображение, размывая края линий, толщина которых на грани разрешения сенсора. Но и данный негативный эффект может оказаться частично полезным. Такие тончайшие линии могут привести к ступенчатости (aliasing) изображения, возникающей от присвоения пикселю определённого цвета вне зависимости от того, закрыт ли он деталью изображения целиком или только его часть. Ступенчатость приводит к появлению в изображении рваных линий с «зазубринами» по краям.

Именно из-за ступенчатости камеры с крупногабаритными полнокадровыми матрицами оснащаются фильтрами защиты от наложения спектров (anti-aliasing filter), и цена этих устройств довольно высока. Ну а матрицам с микролинзами этот фильтр не нужен.

Вследствие различных требований к качеству изображения матрицы с буферизацией столбцов применяются в основном в любительской технике, тогда как полнокадровые сенсоры обосновались в профессиональных и студийных камерах.

Продолжение следует

Настоящая статья даёт описание, если можно так сказать, геометрии пикселя. Более подробно о процессах, происходящих при регистрации, хранении и считывании заряда, будет рассказано в следующей статье.

Вендоры сейчас предлагают огромный выбор камер для видеонаблюдения. Модели отличаются не только общими для всех камер параметрами - фокусным расстоянием, углом обзора, светочувствительностью и т. д.,- но и различными фирменными "фишками", которыми каждый производитель стремится оснастить свои устройства.

Поэтому зачастую краткое описание характеристик камеры для видеонаблюдения представляет собой пугающий перечень непонятных терминов, к примеру: 1/2.8" 2.4MP CMOS, 25/30fps, OSD Menu, DWDR, ICR, AWB, AGC, BLC, 3DNR, Smart IR, IP67, 0.05 Lux и это еще далеко не все.

В предыдущей статье мы остановились на видеостандартах и классификации камер в зависимости от них . Сегодня мы разберем основные характеристики камер для видеонаблюдения и расшифровку обозначений специальных технологий, используемых для улучшения качества видеосигнала:

  1. Фокусное расстояние и угол обзора
  2. Апертура (число F) или светосила объектива
  3. Регулировка диафрагмы (автодиафрагма)
  4. Электронный затвор (AES, скорость затвора, выдержка)
  5. Чувствительность (светочувствительность, минимальное освещение)
  6. Классы защиты IK (Vandal-proof, антивандальные) и IP (от влаги и пыли)

Тип матрицы (CCD ПЗС, CMOS КМОП)

Существует 2 типа матриц камер видеонаблюдения: CCD (на русском - ПЗС) и CMOS (на русском - КМОП). Они отличаются как устройством, так и принципом действия.

CCD CMOS
Последовательное считывание из всех ячеек матрицы Произвольное считывание из ячеек матрицы, что уменьшает риск смиринга - появления вертикального размазывания точечных источников света (ламп, фонарей)
Низкий уровень шумов Высокий уровень шума из-за так называемых темповых токов
Высокая динамическая чувствительность (больше подходят для съемки движущихся объектов) Эффект "бегущего затвора" - при съемке быстро движущихся объектов могут возникать горизонтальные полосы, искажения картинки
Кристалл используется только для размещения светочувствительных элементов, остальные микросхемы нужно размещать отдельно, что увеличивает размеры и стоимость камеры Все микросхемы можно расположить на одном кристалле, что делает производство камер с CMOS-матрицами простым и недорогим
Благодаря использованию площади матрицы только под светочувствительные элементы, возрастает эффективность ее использования - она приближается к 100% Низкое энергопотребление (почти в 100 раз меньше, чем у ПЗС матриц)
Дорогое и сложное производство Быстродействие

Долгое время считалось, что матрица CCD дает гораздо более качественное изображение, чем CMOS. Однако современные матрицы КМОП зачастую практически ничем не уступают ПЗС, особенно в том случае, если к системе видеонаблюдения нет слишком высоких требований.

Размер матрицы

Обозначает размер матрицы по диагонали в дюймах и пишется в виде дроби: 1/3", 1/2", 1/4" и т. д.

Стандартно считается, что чем больше размер матрицы, тем лучше: меньше шумов, четче картинка, больше угол обзора. Однако на самом деле лучшее качество изображения обеспечивает не размер матрицы, а размер ее отдельной ячейки или пикселя - чем он больше, тем лучше. Поэтому при выборе камеры для видеонаблюдения нужно рассматривать размер матрицы вместе с количеством пикселей.

Если матрицы с размерами 1/3" и 1/4" имеют одинаковое количество пикселей, то в этом случае матрица 1/3", естественно, будет давать лучшее изображение. А вот если на ней пикселей больше, то нужно брать в руки калькулятор и подсчитывать примерный размер пикселя.

К примеру, из приведенных ниже расчетов размера ячейки матрицы можно увидеть, что во многих случаях размер пикселя на матрице 1/4" оказывается большим, чем на матрице 1/3", а значит, видеоизображение с 1/4" , хотя она и меньше по размеру, будет лучше.

Размер матрицы Количество пикселей (млн) Размер ячейки (мкм)
1/6 0.8 2,30
1/3 3,1 2,35
1/3,4 2,2 2,30
1/3,6 2,1 2,40
1/3,4 2,23 2,45
1/4 1,55 2,50
1 / 4,7 1,07 2,50
1/4 1,33 2,70
1/4 1,2 2,80
1/6 0,54 2,84
1 / 3,6 1,33 3,00
1/3,8 1,02 3,30
1/4 0,8 3,50
1/4 0,45 4,60

Фокусное расстояние и угол обзора

Эти параметры имеют большое значение при выборе камеры для видеонаблюдения, и они тесно связаны между собой. Фактически, фокусное расстояние объектива (часто обозначается f)- это расстояние между линзой и матрицей.

На практике же фокусное расстояние определяет угол и дальность обзора камеры:

  • чем меньше фокусное расстояние, тем шире угол обзора и тем меньше деталей можно рассмотреть на объектах, расположенных вдали;
  • чем больше фокусное расстояние, тем уже угол обзора видеокамеры и тем детальнее изображение удаленных объектов.


Если вам необходим общий обзор какой-то площади, и вы хотите использовать для этого как можно меньше камер - покупайте камеру с небольшим фокусным расстоянием и, соответственно, широким углом обзора.

А вот на тех участках, где требуется детальное наблюдение за сравнительно небольшой площадью, лучше поставить камеру с увеличенным фокусным расстоянием, направив ее на объект наблюдения. Это часто используется на кассах супермаркетов и банков, где нужно видеть номинал купюр и другие подробности расчетов, а также на въезде на автостоянки и прочие площадки, где необходимо различать автомобильный номер на большом расстоянии.


Самое распространенное фокусное расстояние - 3,6 мм. Оно примерно соответствует углу обзора человеческого глаза. Камеры с таким фокусным расстоянием используются для видеонаблюдения в небольших помещениях.

В представленной ниже таблице - информация и взаимосвязи фокусного расстояния, угла обзора, дистанции распознавания и т. д. для наиболее распространенных фокусов. Цифры примерные, так как зависят не только от фокусного расстояния, но и других параметров оптики камеры.

В зависимости от ширины угла обзора камеры для видеонаблюдения принято делить на:

  • обычные (угол обзора 30°-70°);
  • широкоугольные (угол обзора примерно от 70°);
  • длиннофокусные (угол обзора менее 30°).

Буквой F, только обычно заглавной, обозначается также светосила объектива - поэтому при чтении характеристик обращайте внимание - в каком контексте употребляется параметр.

Тип объектива

Фиксированный (монофокальный) объектив - самый простой и недорогой. Фокусное расстояние в нем зафиксировано, и его нельзя поменять.

В варифокальных (вариофокальных) объективах можно менять фокусное расстояние. Его настройка производится вручную, обычно один раз, когда камера устанавливается на место съемки, а в дальнейшем - по необходимости.

Трансфакторные или зум-объективы также предоставляют возможность менять фокусное расстояние, но удаленно, в любой момент времени. Изменение фокусного расстояния производится с помощью электропривода, поэтому их также называют моторизированными объективами.

"Рыбий глаз" (fisheye, фишай) или панорамный объектив позволяет установить всего одну камеру и достичь при этом 360° обзора.


Конечно, в результате получаемое изображение имеет эффект "пузыря" - прямые линии искривлены, однако в большинстве случаев камеры с такими объективами позволяют разделять одно общее панорамное изображение на несколько отдельных, с корректировкой под привычное человеческому глазу восприятие.

Pinhole-объективы позволяют вести скрытое видеонаблюдение, благодаря своему миниатюрному размеру. Фактически, пинхол-камера не имеет объектива, а лишь миниатюрное отверстие вместо него. В Украине использование скрытого видеонаблюдения серьезно ограничено, как и сбыт устройств для него.

Это наиболее распространенные типы объектива. Но если вдаваться более глубоко, объективы разделяются также по другим параметрам:

Апертура (число F) или светосила объектива

Определяет способность камеры снимать качественную картинку в условиях плохой освещенности. Чем больше число F, тем менее открыта диафрагма и тем большая освещенность требуется камере. Чем меньше апертура, тем больше открыта диафрагма, а видеокамера может давать четкое изображение даже при плохом освещении.

Буквой f (обычно строчной) обозначается также фокусное расстояние, поэтому при чтении характеристик обращайте внимание - в каком контексте употребляется параметр. К примеру, на картинке выше апертура обозначена маленькой f.

Крепление объектива

Для крепления объектива к видеокамере существует 3 вида креплений: C, CS, M12.

  • Крепление C сейчас используется редко. Объективы C можно установить на камеру с креплением CS при помощи специального кольца.
  • Крепление CS - наиболее распространенный тип. Объективы CS несовместимы с камерами C.
  • Крепление M12 используется для объективов небольшого размера.

Регулировка диафрагмы (автодиафрагма), АРД, ARD

Диафрагма отвечает за поступление света на матрицу: при усиленном потоке света она сужается, препятствуя таким образом засвечиванию картинки, а при недостаточном освещении, наоборот, раскрывается, чтобы на матрицу попадало больше света.

Различают две большие группы камер: с фиксированной диафрагмой (сюда же можно отнести камеры вообще без нее) и с регулируемой .

Регулировка диафрагмы в различных моделях камер для видеонаблюдения может осуществляться:

  • Вручную.
  • Автоматически видеокамерой с помощью постоянного тока, на основании количества света, попадающего на матрицу. Такая автоматическая регулировка диафрагмы (АРД) обозначается как DD (Direct Drive) или DD/DC .
  • Автоматически специальным модулем, встроенным в объектив и отслеживающим световой поток, проходящий через относительное отверстие. Такой способ АРД в спецификациях видеокамер обозначается как VD (Video Drive) . Он эффективен даже при попадании в объектив прямых солнечных лучей, но камеры наблюдения с ним дороже.

Электронный затвор (AES, скорость затвора, выдержка, shutter)

У разных производителей этот параметр может обозначаться как автоматический электронный затвор, выдержка или скорость затвора, но по сути он обозначает одно и то же - время, в течение которого свет экспонируется на матрицу. Выражается он обычно в виде 1/50-1/100000s.

Действие электронного затвора чем-то схоже с автоматической регулировкой диафрагмы - он регулирует светочувствительность матрицы, чтобы подстроить ее под уровень освещенности помещения. На рисунке ниже можно увидеть качество изображения в условиях недостаточной освещенности при разной скорости затвора (на рисунке ручная настройка, в то время как AES делает это автоматически).

В отличие от АРД подстройка происходит не путем регулировки светового потока, попадающего на матрицу, а путем регулировки выдержки, длительности накопления электрического заряда на матрице.

Однако возможности электронного затвора гораздо слабее, чем автоматической регулировки диафрагмы, поэтому на открытых пространствах, где уровень освещения изменяется от сумерек до яркого солнечного света, лучше использовать камеры с АРД. Видеокамеры с электронным затвором оптимальны для помещений, где уровень освещения в течение времени меняется незначительно.

Характеристики электронного затвора мало чем отличаются у различных моделей. Полезной фичей является возможность ручной регулировки скорости затвора (выдержки), так как в условиях плохой освещенности автоматически выставляются низкие значения, а это приводит к смазанности изображения движущихся объектов.

Sens-UP (или DSS)

Это функция накопления заряда матрицы в зависимости от уровня освещенности, т. е. увеличения ее чувствительности в ущерб скорости. Необходима для съемки качественной картинки в условиях плохой освещенности, когда отслеживание скоростных событий не критично (на объекте наблюдения нет быстро движущихся объектов).

Она тесно связана с описанной выше скоростью затвора (выдержкой). Но если скорость затвора выражается во временных единицах, то Sens-UP - в коэффициенте увеличения выдержки (xN): время накопления заряда (выдержка) увеличивается в N раз.

Разрешение

Тему разрешений камер видеонаблюдения мы немного затронули в прошлой статье . Разрешение камеры - это, фактически, размер получаемой картинки. Он измеряется либо в ТВЛ (телевизионных линиях), либо в пикселях. Чем больше разрешение, тем больше деталей вы сможете рассмотреть на видео.

Разрешение видеокамеры в ТВЛ - это количество вертикальных линий (переходов яркости), размещенных на картинке по горизонтали. Он считается более точным, поскольку дает представление именно о размере картинки на выходе. Тогда как разрешение в мегапикселях, указываемое в документации производителя, может вводить покупателя в заблуждение - оно часто относится не к размеру итоговой картинки, а к числу пикселей на матрице. В этом случае нужно обращать внимание на такой параметр, как "Эффективное количество пикселей"

Разрешение в пикселях - это размер картинки по горизонтали и вертикали (если он указывается в виде 1280×960) или общее количество пикселей на картинке (если он указывается как 1 МП (мегапиксель), 2 Мп и т. д.). Собственно, разрешение в мегапикселях получить очень просто: нужно умножить количество пикселей по горизонтали (1280) на количество по вертикали (960) и разделить на 1 000 000. Итого 1280×960 = 1,23 МП.

Как пересчитать ТВЛ в пиксели и наоборот? Точной формулы пересчета нет. Для определения разрешения видео в ТВЛ нужно использовать специальные тестовые таблицы для видеокамер. Для примерного представления соотношения можно воспользоваться таблицей:


Эффективные пиксели

Как мы уже сказали выше, часто размер в мегапикселях, указываемый в характеристиках видеокамер, не дает точного представления о разрешении получаемого изображения. Производитель указывает количество пикселей на матрице (сенсоре) камеры, но далеко не все из них участвуют в создании картинки.

Поэтому был введен параметр "Количество (число) эффективных пикселей", который как раз и показывает, сколько пикселей формируют итоговое изображение. Чаще всего он соответствует реальному разрешению получаемой картинки, хотя бывают и исключения.

ИК (инфракрасная) подсветка, IR

Позволяет проводить съемку в ночное время. Возможности матрицы (сенсора) камеры видеонаблюдения гораздо выше, чем человеческого глаза - к примеру, камера может "видеть" в инфракрасном излучении. Это свойство стали использовать для съемок в ночное время и в неосвещенных/слабоосвещенных помещениях. При достижении определенного минимума освещения видеокамера переходит в режим съемки в инфракрасном диапазоне и включает ИК-подсветку (IR).

Светодиоды IR встраиваются в камеру таким образом, чтобы свет от них не попадал в объектив камеры, а освещал угол ее обзора.

Изображение, полученное в условиях слабого освещения с помощью инфракрасной подсветки, всегда черно-белое. Цветные камеры, которые поддерживают ночную съемку, также переходят в черно-белый режим.

Значения ИК-подсветки в видеокамерах обычно даются в метрах - т. е. на сколько метров от камеры подсветка позволяет получить четкое изображение. IR-подсветку с большой дальностью называют ИК-прожектором.

Что такое Smart ИК, Smart IR?

Умная ИК-подсветка (Smart ИК) позволяет увеличивать или уменьшать мощность инфракрасного излучения в зависимости от дистанции до объекта. Это делается для того, чтобы объекты, оказавшиеся близко к камере, не были засвечены на видео.

ИК фильтр (ICR), режим день/ночь

Использование инфракрасной подсветки для съемок в ночное время имеет одну особенность: матрица таких камер выпускается с повышенной чувствительностью к инфракрасному диапазону. Это создает проблему для съемок в дневное время, так как матрица регистрирует инфракрасный спектр и днем, что нарушает нормальную цветность получаемого изображения.

Поэтому такие камеры работают в двух режимах - день и ночь. Днем матрицу закрывает механический инфракрасный фильтр (ICR), который отсекает инфракрасное излучение. Ночью фильтр сдвигается, позволяя лучам ИК-спектра беспрепятственно попадать на матрицу.

Иногда переключение режима день/ночь реализуется программно, однако такое решение дает менее качественные изображения.

Фильтр ICR может устанавливаться и в камерах без инфракрасной подсветки - для отсечения инфракрасного спектра в дневное время и улучшения цветопередачи видео.

Если в камере нет фильтра IGR, потому что она изначально не была предназначена для съемок в ночное время, ей нельзя добавить функцию ночной съемки, просто докупив отдельный модуль с ИК-подсветкой. В этом случае цветность дневного видео будет существенно искажаться.

Чувствительность (светочувствительность, минимальное освещение)

В отличие от фотокамер, где светочувствительность выражается параметром ISO, светочувствительность камер видеонаблюдения чаще всего выражается в люксах (Lux) и означает минимальное освещение, при котором камера способна давать видеоизображение хорошего качества - четкое и без шумов. Чем ниже значение этого параметра, тем выше чувствительность.

Камеры для видеонаблюдения подбираются в соответствии с теми условиями, в которых их планируется эксплуатировать: к примеру, если минимальная чувствительность камеры составляет 1 люкс, то четкого изображения в ночное время без дополнительной инфракрасной подсветки с нее получить не удастся.

Условия Уровень освещенности
Естественное освещение на улице в безоблачный солнечный день свыше 100 000 люкс
Естественное освещение на улице в солнечный день с легкими облаками 70 000 люкс
Естественное освещение на улице в пасмурную погоду 20 000 люкс
Магазины, супермаркеты: 750-1500 люкс
Офис или магазин: 50-500 люкс
Холлы гостиниц: 100-200 люкс
Стоянки автотранспорта, товарные склады 75-30 люкс
Сумерки 4 люкс
Хорошо освещенная автомагистраль ночью 10 люкс
Места зрителей в театре: 3-5 люкс
Больница в ночное время, глубокие сумерки 1 люкс
Полнолуние 0,1 - 0,3 люкс
Лунная ночь (четверть Луны) 0,05 люкс
Ясная безлунная ночь 0,001 люкс
Облачная безлунная ночь 0,0001 люкс

Соотношение сигнал/ шум (S/ N) определяет качество видеосигнала. Шумы на видеоизображении появляются в результате плохого освещения и выглядят как цветной или черно-белый снег или зернистость.

Параметр измеряется в децибелах. На картинке ниже довольно неплохое качество изображения показано уже при 30 Дб, но в современных камерах для получения качественного видео S/N должно быть не ниже 40 Дб.

Подавление шумов DNR (3D-DNR, 2D-DNR)

Естественно, что проблема наличия шумов в видео не осталась без внимания производителей. На данный момент существуют две технологии подавления шумов на картинке и соответствующего улучшения изображения:

  • 2-DNR. Более старая и менее совершенная технология. В основном, убираются шумы только ближнего плана, кроме того, иногда изображение из-за чистки немного смазывается.
  • 3-DNR. Новейшая технология, которая работает по сложному алгоритму и убирает не только ближние шумы, но и снег и зернистость на дальнем фоне.

Частота кадров, fps (скорость потока)

Частота кадров влияет на плавность видеоизображения - чем она выше, тем лучше. Для достижения плавной картинки необходима частота не менее 16-17 кадров в секунду. Стандарты PAL и SECAM поддерживают частоту кадров на уровне 25 к/с, а стандарт NTSC - 30 к/с. У профессиональных камер частота кадров может доходить до 120 к/с и выше.

Однако нужно учитывать, что чем выше частота кадров - тем больше места потребуется для хранения видео и тем больше будет загружен канал передачи.

Компенсация засветки (HLC, BLC, WDR, DWDR)

Распространенными проблемами видеонаблюдения являются:

  • отдельные яркие объекты, попадающие в кадр (фары, лампы, фонари), которые засвечивают часть изображения, и из-за которых невозможно рассмотреть важные детали;
  • слишком яркое освещение на заднем плане (солнечная улица за дверями помещения или за окном и тому подобное), на фоне которого ближние объекты отображаются слишком темными.

Для их решения существует несколько функций (технологий), применяемых в камерах наблюдения.

HLC - компенсация яркой засветки. Сравните:

BLC - компенсация задней засветки. Реализуется путем увеличения экспозиции всего изображения, в результате чего объекты на переднем плане становятся светлее, однако задний фон получается слишком светлым, на нем невозможно рассмотреть детали.

WDR (иногда его называют также HDR) - широкий динамический диапазон. Также используется для компенсации задней засветки, но более эффективно, чем BLC. При использовании WDR все объекты на видео имеют примерно одинаковую яркость и четкость, что позволяет в деталях рассмотреть не только передний план, но и задний. Достигается это благодаря тому, что камера делает снимки с разной экспозицией, и потом совмещает их для получения кадра с оптимальной яркостью всех объектов.

D-WDR - программная реализация широкого динамического диапазона , которая несколько хуже, чем полноценный WDR.

Классы защиты IK (Vandal-proof, антивандальные) и IP (от влаги и пыли)

Этот параметр важен, если вы выбираете камеру для наружного видеонаблюдения или в помещение с высокой влажностью, пыльностью и проч.

Классы IP - это защита от попадания внутрь посторонних предметов различного диаметра, в том числе пылевых частиц, а также защита от влаги. Классы IK - это антивандальная защита, т. е. от механического воздействия.

Самыми распространенными среди наружных камер видеонаблюдения классами защиты являются IP66, IP67 и IK10.

  • Класс защиты IP66 : камера полностью пыленепроницаема и защищена от сильных водяных струй (или морских волн). Внутрь вода попадает в незначительных количествах и не нарушает работу видеокамеры.
  • Класс защиты IP67 : камера полностью пыленепроницаема и может выдержать кратковременное полное погружение под воду или долго находиться под снегом.
  • Антивандальный класс защиты IK10 : корпус камеры выдержит попадание 5 кг груза с 40 см высоты (энергия удара 20 Дж).

Скрытые зоны (Privacy Mask)

Иногда возникает необходимость скрыть от наблюдения и записи некоторые участки, попадающие в поле зрения камеры. Чаще всего это связано с охраной неприкосновенности частной жизни. Некоторые модели камер позволяют настроить параметры нескольких таких зон, закрыв определенную часть или части изображения.

К примеру, на рисунке ниже на изображении с камеры скрыты окна соседнего дома.

Другие функции камер видеонаблюдения (DIS, AGC, AWB и др.)

OSD меню - возможность ручной настройки множества параметров камеры: экспозиции, яркости, фокусного расстояния (если есть такая опция) и т. д.

- съемка в условиях плохой освещенности без инфракрасной подсветки.

DIS - функция стабилизации изображения с камеры при съемке в условиях вибрации или движения

EXIR Technology - технология инфракрасной подсветки, разработанная Hikvision. Благодаря ей достигается большая эффективность подсветки: большая дальность при меньшем энергопотреблении, рассеивании и т. д.

AWB - автоматическая регулировка баланса белого цвета в изображении, с тем, чтобы цветопередача была как можно ближе к естественной, видимой человеческим глазом. Особенно актуальна для помещений с искусственным освещением и различными источниками света.

AGC (АРУ) - автоматическая регулировка усиления. Применяется для того, чтобы выходной видеопоток с камер всегда был стабильным, независимо от силы входного видеопотока. Чаще всего усиление видеосигнала требуется в условиях слабой освещенности, а уменьшение - наоборот, при слишком сильном освещении.

Детектор движения - благодаря этой функции камера может включаться и вести запись только при возникновении движения на объекте наблюдения, а также передавать сигнал тревоги при срабатывании детектора. Это помогает сэкономить место для хранения видео на видеорегистраторе, разгрузить канал передачи видеопотока, и организовать оповещение персонала о произошедшем нарушении.

Тревожный вход камеры - это возможность включить камеру, начать запись видео при наступлении какого-либо события: срабатывания подключенного датчика движения или другого подключенного к ней датчика.

Тревожный выход позволяет запустить реакцию на зафиксированное камерой тревожное событие, например, включить сирену, отправить оповещение по почте или SMS и т. д.

Не нашли характеристику, которую искали?

Мы постарались собрать все часто встречаемые характеристики камер для видеонаблюдения. Если вы не нашли здесь пояснение какого-то непонятного для вас параметра - напишите в комментариях, мы постараемся добавить эту информацию в статью.


сайт

Неизвестный Сергей Иванович
Никулин Олег Юрьевич

ПРИБОРЫ С ЗАРЯДОВОЙ СВЯЗЬЮ -
ОСНОВА СОВРЕМЕННОЙ ТЕЛЕВИЗИОННОЙ ТЕХНИКИ.
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ПЗС.

В предыдущей статье был сделан краткий анализ существующих полупроводниковых приёмников света и подробно описаны строение и принцип функционирования приборов с зарядовой связью.

В предлагаемой статье речь пойдет о физических характеристиках ПЗС-матриц и об их влиянии на общие свойства телекамер.

Число элементов ПЗС-матрицы.

Пожалуй, самая “базовая” характеристика ПЗС-матриц - число элементов. Как правило, подавляющее число моделей имеют стандартное число элементов, ориентированное на телевизионный стандарт: 512х576 пиксел (эти матрицы обычно используются в простых и дешевых системах видеонаблюдения) и 768х576 пиксел (такие матрицы позволяют получить максимальное разрешение для стандартного телевизионного сигнала).

Наиболее крупным из изготовленных и описанных в литературе ПЗС является монокристальный прибор корпорации Ford Aerospace размером 4096х4096 пикселов со стороной пиксела 7,5 микрон.

При производстве выход качественных приборов больших размеров очень невысок, поэтому при создании ПЗС-видеокамер для съемок крупноформатных изображений применяют другой подход. Многими фирмами изготавливаются ПЗС с выводами, расположенными на трех, двух или одной стороне (buttable CCD). Из таких приборов собирают мозаичные ПЗС. Например, фирмой Loral Fairchild изготавливается очень интересный и перспективный прибор 2048х4096 15 мкм. Выводы этого ПЗС вынесены на одну узкую сторону. Достижения российской промышленности несколько скромнее. НПП “Силар” (Санкт-Петербург) выпускает ПЗС 1024х1024 16 мкм с объемным каналом переноса заряда, виртуальной фазой и выводами на одной стороне прибора. Такая архитектура приборов позволяет стыковать их друг с другом с трех сторон.

Интересно отметить, что в настоящее время создано несколько специализированных крупноформатных светоприемников на основе ПЗС-мозаик. Так, например, из восьми ПЗС 2048х4096 компании Loral Fairchild собирается мозаика 8192х8192 с общими размерами 129х129 мм. Зазоры между отдельными кристаллами ПЗС составляют менее 1 мм. В некоторых приложениях относительно большие зазоры (до 1 см) не считаются серьезной проблемой, так как полное изображение можно получить суммированием в памяти компьютера нескольких экспозиций, слегка смещенных относительно друг друга, заполняя таким образом зазоры. Изображение, полученное мозаикой 8196х8196, содержит 128 Мбайт информации, что эквивалентно, примерно, 100-томной энциклопедии по 500 страниц в каждом томе. Хотя эти цифры и внушительны, они все же малы по сравнению с размерами и разрешением фотографических эмульсий, которые могут изготавливаться огромными листами. Даже самая крупнозернистая 35-мм пленка содержит в кадре до 25 миллионов разрешаемых зерен (пикселов).

Разрешающая способность телекамер

От числа элементов ПЗС-матрицы напрямую зависит один из основных параметров телекамеры - разрешение (или разрешающая способность). На разрешение камеры в целом, кроме того, влияют параметры электронной схемы обработки сигнала и параметры оптики.

Разрешение определяется как максимальное количество чёрных и белых полос (т.е. количество переходов от черного к белому или обратно), которые могут быть переданы камерой и различимы системой регистрации на предельно обнаруживаемом контрасте.

Это означает, что камера позволяет рассмотреть N/2 темных вертикальных штрихов на светлом фоне, уложенных во вписанный в поле изображения квадрат, если в паспорте камеры указано, что её разрешение составляет N телевизионных линий. Применительно к стандартной телевизионной таблице это предполагает следующее: подбирая расстояние и фокусируя изображение таблицы, надо добиться того, чтобы верхний и нижний края изображения таблицы на мониторе совпали с внешними контурами таблицы, отмечаемыми вершинами черных и белых призм. Далее, после окончательной подфокусировки, считывается число в том месте вертикального клина, где вертикальные штрихи в первый раз перестают различаться. Последнее замечание очень важно, так как и на изображении тестовых полей таблицы, имеющих 600 и более штрихов, часто видны перемежающиеся полосы, которые, на самом деле, являются муаром, образованным биением пространственных частот штрихов таблицы и сетки чувствительных элементов ПЗС-матрицы. Такой эффект особенно ярко выражен в камерах с высокочастотными пространственными фильтрами.

За единицу измерения разрешения в телесистемах принимается ТВЛ (тв-линия). Разрешение по вертикали у всех камер практически одинаково, ибо ограничено телевизионным стандартом - 625 строк телевизионной развертки и они по этой координате не могут передать больше 625 объектов. Различие в разрешении по горизонтали - именно оно обычно указывается в технических описаниях.

На практике в большинстве случаев разрешение 380-400 тв-линий вполне достаточно для задач теленаблюдения общего характера. Однако, для специализированных телесистем и задач, таких, как телемониторинг большого пространства одной камерой, просмотр большого периметра телекамерой с переменным угловым увеличением (зумом), слежения в аэропортах, железнодорожных вокзалах, причалах, супермаркетах, системы отождествления и распознавания автомобильных номеров, системы идентификации по лицу и пр., требуется более высокое разрешение (для этого используются камеры с разрешением 570 и более тв-линий).

Разрешение цветных камер несколько хуже, чем черно-белых. Это является следствием того, что структура пиксела ПЗС-матриц, применяемых в цветном телевидении, отличается от структуры пиксела черно-белых матриц. Образно говоря, пиксел цветной матрицы состоит из комбинации трех пикселов, каждый из которых регистрирует свет либо в красной (Red), либо в зелёной (Green), либо в голубой (Blue) части оптического спектра. Таким образом, с каждого элемента цветной ПЗС-матрицы снимется три сигнала (RGB-сигнал). Эффективное разрешение при этом должно быть в раз хуже, чем у чёрно-белых матриц. Однако, у цветных матриц разрешение ухудшается меньше, так как размер их пиксела по сравнению с размером пиксела аналогичной чёрно-белой матрицы в полтора раза меньше, что в результате приводит к ухудшению разрешения всего лишь на 30-40%. Негативной стороной этого является снижение чувствительности цветных матриц, поскольку эффективная площадь регистрации элемента изображения становится существенно меньше. Типичное разрешение цветных телекамер составляет 300 - 350 тв-линий.

Кроме того, на разрешение камеры влияет полоса частот видеосигнала, выдаваемого камерой. Для передачи сигнала 300 ТВЛ необходима полоса частот 2,75 МГц (150 периодов на 55 мкс строки телевизионной развертки). Связь между полосой частот телеразвертки (n пчтр) и разрешением (ТВЛ) определяется соотношением:

n пчтр =(ТВЛ/2) х n чств,

где частота n пчтр измеряется в МГц, разрешение ТВЛ в тв-линиях, частота строчной телеразвертки n чств =18.2 кГц.

В настоящее время разработано много разнообразных полупроводниковых усилителей с хорошими частотными характеристиками, поэтому полоса пропускания усилителей камеры обычно значительно (в 1,5-2 раза) превосходит необходимую, чтобы ни в коей мере не повлиять на итоговое разрешение системы. Так что разрешение ограничивается именно топологией дискретности светоприемной области ПЗС-матрицы. Иногда факт применения хорошего электронного усилителя называют красивыми словами типа “resolution enhancement” или “edge enhancement”, что можно перевести как “контрастное разрешение” и “подчёркнутые границы”. Надо отдавать себе отчет в том, что такой подход не улучшает собственно разрешение, таким образом улучшается только четкость передачи границ черного и белого, да и то не всегда.

Однако есть один случай, когда никакие ухищрения современной электроники не позволяют поднять полосу пропускания видеосигнала выше 3,8 МГц. Это композитный цветной видеосигнал. Поскольку сигнал цветности передается на несущей (в стандарте PAL - на частоте около 4,4 МГц.), то сигнал яркости принудительно ограничивается полосой 3,8 МГц (строго говоря, стандарт предполагает гребёнчатые фильтры для разделения сигналов цветности и яркости, однако реальное оборудование имеет просто фильтры НЧ). Это соответствует разрешению около 420 ТВЛ. В настоящее время некоторые производители декларируют разрешение своих цветных камер 480 ТВЛ и более. Но они, как правило, не акцентируют внимание на том, что это разрешение реализуется, лишь если сигнал снимается с Y-C (S-VHS) или компонентного (RGB) выхода. В этом случае сигналы яркости и цветности передаются двумя (Y-C) или тремя (RGB) отдельными кабелями от камеры к монитору. При этом монитор, а также все промежуточное оборудование (переключатели, мультиплексоры, видеомагнитофоны) также должны обладать входами/выходами типа Y-C (или RGB). В противном случае, один-единственный промежуточный элемент, обрабатывающий композитный видеосигнал, ограничит полосу пропускания упомянутыми 3,8 МГц и сделает все затраты на дорогие камеры бесполезными.

Квантовая эффективность и квантовый выход ПЗС-камеры.

Под квантовой эффективностью будем понимать отношение числа зарегистрированных зарядов к числу попавших фотонов на светочувствительную область кристалла ПЗС.

Однако не следует путать понятия квантовая эффективность и квантовый выход. Квантовый выход - это отношение числа фотоэлектронов, образовавшихся в полупроводнике или вблизи его границы в результате фотоэффекта, к числу упавших на этот полупроводник фотонов.

Квантовая эффективность - это квантовый выход светорегистрирующей части приемника, умноженный на коэффициент преобразования заряда фотоэлектрона в зарегистрированный полезный сигнал. Поскольку этот коэффициент всегда меньше единицы, то квантовая эффективность также меньше квантового выхода. Особенно велико это различие для приборов с низкоэффективной системой регистрации сигнала.

По квантовой эффективности ПЗС не имеют себе равных. Для сравнения, из каждых 100 фотонов, попадающих в зрачок глаза, только один воспринимается сетчаткой (квантовый выход равен 1%), лучшие фотоэмульсии имеют квантовую эффективность 2-3%, электровакуумные приборы (например, фотоумножители) - до 20%, у ПЗС этот параметр может достигать 95% при типичном значении от 4% (низкокачественные ПЗС, используемые, как правило, в дешёвых видеокамерах “желтой” сборки) до 50% (типичная неотобранная видеокамера западной сборки). Кроме того, ширина диапазона длин волн, на которые реагирует глаз, гораздо уже, чем у ПЗС. Так же ограничен спектральный диапазон у фотокатодов традиционных вакуумных телекамер и фотоэмульсий. ПЗС реагируют на свет с длиной волн от единиц ангстрем (гамма и рентгеновское излучение) до 1100 нм (ИК-излучение). Этот огромный диапазон намного больше спектрального диапазона любого другого детектора, известного к настоящему времени.


Рис. 1.Пример квантовой эффективности ПЗС-матрицы.

Чувствительность и спектральный диапазон

С понятиями квантовой эффективности и квантового выхода тесно связан другой важный параметр телекамеры - чувствительность. Если квантовой эффективностью и квантовым выходом оперируют, в основном, разработчики и проектировщики новых телесистем, то чувствительностью пользуются инженеры-наладчики, служба эксплуатации и проектировщики непосредственных рабочих проектов на предприятиях. По сути, чувствительность и квантовый выход приёмника связаны между собой линейной функцией. Если квантовый выход связывает количество падающих на светоприемник фотонов и число фотоэлектронов, порождённых этими фотонами в результате фотоэффекта, то чувствительность определяет отклик светоприёмника в электрических единицах измерения (например, в мА) на определённую величину падающего потока света (например, в Вт или в лк/сек). При этом разделяется понятие болометрической чувствительности (т.е. суммарная во всем спектральном диапазоне чувствительности приёмника) и монохроматическая, измеряемая, как правило, по потоку излучения спектральной шириной в 1 нм (10 ангстрем). Когда говорят, что чувствительность приёмника на длине волны (например, 450 нм), то это означает, что чувствительность пересчитана на поток в диапазоне от 449,5 нм до 450,5 нм. Такое определение чувствительности, измеряемой в мА/Вт, является однозначным и не вызывает при его использовании никакой путаницы.

Однако для потребителей телевизионной техники, применяемой в охранных системах, чаще используют другое определение чувствительности. Чаще всего под чувствительностью понимают минимальную освещенность на объекте (scene illumination), при которой можно различить переход от черного к белому, или минимальную освещенность на матрице (image illumination).

С теоретической точки зрения более правильно было бы указывать минимальную освещенность на матрице, так как в этом случае не нужно оговаривать характеристики используемого объектива, расстояние до объекта и его коэффициент отражения (иногда этот коэффициент называют словом “альбедо”). Альбедо обычно определяется на конкретной длине волны, хотя есть такое понятие как болометрическое альбедо. Очень сложно объективно оперировать с определением чувствительности, базирующимся на освещенности на объекте. Это особенно сказывается при проектировании телесистем распознавания на больших расстояниях. Многие матрицы не могут зарегистрировать изображение лица человека, находящегося на расстоянии 500 метров, даже если оно освещено очень ярким светом.*

Примечание

* Задачи такого рода появляются в практике охранного телевидения, особенно в местах с повышенной угрозой терроризма и пр. Телесистемы такого рода разработаны в 1998 году в Японии и готовятся к массовому производству.

Но пользователю при подборе камеры удобней работать с освещенностью объекта, которую он заранее знает. Поэтому обычно указывают минимальную освещенность на объекте, измеренную в стандартизованных условиях - коэффициент отражения объекта 0,75 и светосила объектива 1,4. Формула, связывающая освещенность на объекте и на матрице, приведена ниже:

Iimage=Iscene х R/(p х F2),

где Iimage , Iscene - освещенность ПЗС-матрицы и объекта (табл. 1);
R - коэффициент отражения объекта (табл. 2);
p - число 3,14;
F - светосила объектива.

Значения Iimage и Iscene отличаются обычно больше, чем в 10 раз.

Освещенность измеряется в люксах. Люкс - освещенность, создаваемая точечным источником в одну международную свечу на расстоянии в один метр на поверхности, перпендикулярной к лучам света.

Таблица 1. Ориентировочная освещенность объектов.

На улице (широта Москвы)
Безоблачный солнечный день 100 000 люкс
Солнечный день с легкими облаками 70 000 люкс
Пасмурный день 20 000 люкс
Ранее утро 500 люкс
Сумерки 0.1 - 4 люкса
“Белые ночи”* 0.01 – 0.1 люкса
Ясная ночь, полная луна 0,02 люкса
Ночь, луна в облаках 0,007 люкса
Темная облачная ночь 0,00005 люкса
В помещении
Помещение без окон 100 – 200 люкс
Хорошо освещенное помещение 200 – 1000 люкс

* “Белые ночи” - условия освещенности, удовлетворяющие гражданским сумеркам, т.е. когда солнце погружается под горизонт без учёта атмосферной рефракции не более чем на 6° . Это справедливо для Санкт-Петербурга. Для Москвы выполняются условия так называемых “навигационных белых ночей”, т.е. когда диск солнца погружается под горизонт не более чем на 12° .

Нередко чувствительность камеры указывают для “приемлемого сигнала”, под которым подразумевается такой сигнал, когда отношение сигнал/шум составляет 24 дБ. Это эмпирически определенное предельное значение зашумленности, при котором изображение еще можно записывать на видеопленку и надеяться при воспроизведении что-то увидеть.

Другой способ определения “приемлемого” сигнала - шкала IRE (Institute of Radio Engineers). Полный видеосигнал (0,7 вольта) принимается за 100 единиц IRE. “Приемлемым” считается сигнал около 30 IRE. Некоторые производители, в частности, BURLE, указывает для 25 IRE, некоторые - для 50 IRE (уровень сигнала -6 дБ). Выбор “приемлемого” уровня определяется отношением сигнал/шум. Нетрудно усилить электронный сигнал. Беда, что шум усилится тоже. Наибольшей чувствительностью среди ПЗС-матриц массового производства ныне обладают Hyper-HAD матрицы фирмы Sony, имеющие микролинзу на каждой светочувствительной ячейке. Именно они применяются в большинстве камер высокого качества. Разброс параметров, построенных на их основе камер означает, в основном, разнобой в подходах производителей к определению понятия “приемлемый сигнал”.

Дополнительная проблема с определением чувствительности связана с тем, что единица измерения освещенности “люкс” определена для монохроматического излучения с длиной волны 550 нм. В связи с чем имеет смысл обращать особое внимание на такую характеристику, как спектральная зависимость чувствительности видеокамеры. В большинстве случаев чувствительность черно-белых камер существенно, по сравнению с человеческим глазом, растянута в инфракрасный диапазон вплоть до 1100 нм. У некоторых модификаций чувствительность в ближней инфракрасной области даже выше, чем в видимой. Эти камеры предназначены для работы с инфракрасными прожекторами и по некоторым параметрам приближаются к приборам ночного видения.

Спектральная чувствительность цветных камер примерно совпадает с человеческим глазом.


Рис. 2. Пример спектральной чувствительности цветной ПЗС-матрицы с RGB стандартными полосами.

Таблица 2. Примерные значения коэффициентов отражения различных объектов.

Объект Коэффициент отражения (%)
Снег 90
Белая краска 75-90
Стекло 70
Кирпич 35
Трава, деревья 20
Человеческое лицо 15 – 25
Каменный уголь, графит* 7

* Интересно отметить, что коэффициент отражения лунной поверхности тоже составляет около 7%, т.е. Луна на самом деле чёрная.

Особого упоминания заслуживают сверхвысокочувствительные камеры, фактически, являющие собой комбинацию обычной камеры и прибора ночного видения (например, микроканальный электронно-оптический преобразователь - ЭОП). Подобные камеры обладают уникальными свойствами (чувствительность в 100 - 10000 раз выше обычных, причем в среднем инфракрасном диапазоне там, где наблюдается максимум излучения человеческого тела, оно само светится), но, с другой стороны, и уникальной капризностью - время наработки на отказ составляет около одного года, причем камеры не следует включать днем, рекомендуется даже закрывать их объектив, чтобы предохранить от выгорания катод ЭОП. Как минимум, следует устанавливать объективы с диапазоном автоматической диафрагмы до F/1000 или более. Во время работы камеру необходимо регулярно чуть-чуть поворачивать, дабы избежать “вжигания” изображения на катоде ЭОП.

Интересно отметить, что в отличие от ПЗС-матриц, катоды ЭОП очень чувствительны к максимальным засветкам. Если светочувствительная область ПЗС-камеры после яркого освещения сравнительно легко возвращается в своё исходное состояние (ей практически не страшны засветки), то катод ЭОП после яркой засветки очень долго (иногда 3-6 часов) “восстанавливается”. Во время этого восстановления, даже при закрытом входном окне, с катода ЭОП считывается остаточное, “воженное” изображение. Как правило, после больших засветок, из-за эффектов реабсорбции (выделение газов под воздействием бомбардировки стен каналов потоками ускоряемых электронов) на большой площади микроканальных пластин резко возрастают шумы ЭОП и, в частности, многоэлектронные и ионные. Последние проявляются в виде частых ярких вспышек большого диаметра на экране монитора, что резко затрудняет выделение полезного сигнала. При ещё больших входных световых потоках могут произойти необратимые процессы как с катодом, так и с выходным люминесцентным экраном ЭОП: под воздействием большого потока происходит выход из строя (“выжигание”) отдельных их участков. При дальнейшей эксплуатации эти участки имеют пониженную чувствительность, падающую в дальнейшем до нуля.

В большинстве телекамер сверхвысокой чувствительности применяются усилители яркости с выходными люминесцентными экранами жёлтого или желто-зеленого свечения. В принципе, свечение этих экранов можно рассматривать как монохроматический источник излучения, что автоматически приводит к определению: системы такого типа могут быть только монохромные (т.е. чёрно-белые). Учитывая это обстоятельство, создатели систем подбирают и соответствующие ПЗС-матрицы: с максимумом чувствительности в жёлто-зелёной части спектра и с отсутствием чувствительности в ИК-диапазоне.

Отрицательным следствием высокой чувствительности матриц в ИК-диапазоне является повышенная зависимость шумов прибора от температуры. Поэтому ИК-матрицы, используемые для работ в вечернее и ночное время без усилителей яркости, в отличие от телесистем с ЭОП, рекомендуется охлаждать. Основной причиной сдвига чувствительности ПЗС-телекамер в ИК-область по сравнению с другими полупроводниковыми приёмниками излучения связан с тем, что более красные фотоны проникают дальше в кремний, так как прозрачность кремния больше в длинноволновой области и при этом вероятность захвата фотона (преобразования его в фотоэлектрон) стремится к единице.


Рис. 3. Зависимость глубины поглощения фотонов в кремнии от длины волны.

Для света с длиной волны больше 1100 нм кремний прозрачен (энергии красных фотонов не достаточно для создания электронно-дырочной пары в кремнии), а фотоны с длиной волны менее 300-400 нм поглощаются в тонком поверхностном слое (уже на поликремневой структуре электродов) и не достигают потенциальной ямы.

Как уже говорилось выше, при поглощении фотона генерируется пара носителей электрон-дырка, и электроны собираются под электродами, если поглощение фотона произошло в обедненной области эпитаксиального слоя. При такой структуре ПЗС может быть достигнута квантовая эффективность около 40% (теоретически на этой границе квантовый выход равен 50%). Однако поликремниевые электроды непрозрачны для света с длиной волны короче 400 нм.

Для получения более высокой чувствительности в коротковолновом диапазоне часто используют покрытие ПЗС тонкими пленками веществ, которые поглощают голубые или ультрафиолетовые (УФ) фотоны и переизлучают в видимом или красном диапазоне длин волн.

Шумом называют любой источник неопределенности сигнала. Можно выделить следующие типы шумов ПЗС.

Фотонный шум. Является следствием дискретной природы света. Любой дискретный процесс подчиняется закону (статистике) Пуассона. Поток фотонов (S - количество фотонов, падающих на светочувствительную часть приемника за единицу времени) так же следует этой статистике. Согласно ей, фотонный шум равен . Таким образом, отношение сигнал/шум (обозначается как S/N - signal/noise ratio) для входного сигнала будет:

S/N==.

Шум темнового сигнала.Если на вход матрицы не подавать световой сигнал (например, плотно закрыть светонепроницаемой крышкой объектив видеокамеры), то на выходе системы получим так называемые “темновые” кадры, по-другому его называют шум-снежок. Основной составляющей темнового сигнала является термоэлектронная эмиссия. Чем ниже температура, тем ниже и темновой сигнал. Термоэлектронная эмиссия также подчиняется статистике Пуассона и её шум равен: , где N t - число термически сгенерированных электронов в общем сигнале. Как правило, во всех используемых в системах охранного телевидения видеокамерах ПЗС применяются без активного охлаждения, вследствие чего темновой шум оказывается одним из основных источников шума.

Шум переноса. Во время переноса зарядового пакета по элементам ПЗС некоторая часть электронов теряется. Она захватывается на дефектах и примесях, существующих в кристалле. Эта неэффективность переноса случайным образом меняется как функция количества переносимых зарядов (N), числа переносов (n) и неэффективности отдельного акта переноса (e). Если предположить, что каждый пакет переносится независимо, то шум переноса можно представить следующим выражением:

s =.

Пример: для неэффективности переноса 10 -5 , 300 переносов и числа электронов в пакете 10 5 , шум переноса составит 25 электронов.

Шум считывания. Когда сигнал, накопленный в элементе ПЗС, выводится из матрицы, преобразуется в напряжение и усиливается, в каждом элементе появляется дополнительный шум, называемый шумом считывания. Шум считывания можно представить как некоторый базовый уровень шума, который присутствует даже в изображении с нулевым уровнем экспозиции, когда матрица находится в полной темноте и шум темнового сигнала равен нулю. Типичный шум считывания для хороших образцов ПЗС составляет 15-20 электронов. В лучших образцах ПЗС, изготавливаемых корпорацией Ford Aerospace по технологии Skipper, достигнут шум считывания менее 1 электрона и неэффективность переноса составляет 10 -6 .

Шум сброса или kTC-шум. Перед вводом в детектирующий узел сигнального заряда необходимо вывести предыдущий заряд. Для этого используется транзистор сброса. Электрический уровень сброса зависит только от температуры и емкости детектирующего узла, что вносит шум:

s r =,

где k - постоянная Больцмана.

Для типичного значения ёмкости С равной 0.1пф при комнатной температуре шум сброса составит около 130 электронов. kTC-шум может быть полностью подавлен специальным методом обработки сигнала: двойной коррелированной выборкой (ДКВ). Метод ДКВ эффективно устраняет и низкочастотные сигналы, вносимые обычно цепями питания.

Поскольку основная нагрузка на системы охранного телевидения приходится на темное время суток (либо плохо освещенные помещения), то особенно важно уделять внимание низкошумящим видеокамерам, имеющим большую эффективность применения в условиях низкого освещения.

Параметр, описывающий относительную величину шума, как было сказано выше, называется отношением сигнал/шум (S/N) и измеряется в децибелах.

S/N =20 х log(<видеосигнал>/<шум>)

Например, сигнал/шум, равный 60 дБ, означает, что сигнал в 1000 раз больше шума.

При соотношении сигнал/шум 50 дБ и более на мониторе будет видна чистая картинка без видимых признаков шума, при 40 дБ - иногда заметны мелькающие точки, при 30 дБ - “снег” по всему экрану, при 20 дБ - изображение практически неприемлемо, хотя крупные контрастные объекты через сплошную “снежную” пелену разглядеть еще можно.

В данных, приводимых в описаниях камер, указываются значения сигнал/шум для оптимальных условий, например, при освещенности на матрице 10 люкс и при выключенной автоматической регулировке усиления и гамма-коррекции. По мере уменьшения освещенности сигнал становится меньше, а шум, вследствие действия АРУ и гамма-коррекции, больше.

Динамический диапазон

Динамический диапазон - это отношение максимально возможного сигнала, сформированного светоприемником, к его собственному шуму. Для ПЗС этот параметр определяется как отношение наибольшего зарядового пакета, который может быть накоплен в пикселе к шуму считывания. Чем больше размер пиксела ПЗС, тем больше электронов может удерживаться в нем. Для разных типов ПЗС эта величина составляет от 75000 до 500000 и выше. При 10 е - шумов (шум ПЗС измеряется в электронах е -) динамический диапазон ПЗС достигает значения 50000. Большой динамический диапазон особенно важен для регистрации изображения в уличных условиях при ярком солнечном свете или в ночных условиях, когда имеется большой перепад освещенности: яркий свет от фонаря и неосвещенная теневая сторона объекта. Для сравнения: лучшие фотоэмульсии имеют динамический диапазон лишь около 100.

Для более наглядного понимания некоторых характеристик ПЗС-приемников и, прежде всего, динамического диапазона, приведем краткое сопоставление их со свойствами глаза человека.

Глаз - самый универсальный светоприёмник.

До сих пор самым эффективным и совершенным, с точки зрения динамического диапазона (и, в особенности, с точки зрения эффективности обработки и восстановления изображения), светоприёмником является человеческий глаз. Дело в том, что глаз человека совмещает два типа светорегистраторов: палочки и колбочки.

Палочки имеют малый размер и сравнительно низкую чувствительность. Они расположены в основном в области центрального жёлтого пятна и практически отсутствуют на периферии сетчатки глазного дна. Палочки хорошо отличают свет с разной длиной волны, точнее имеют механизм формирования разного нейросигнала в зависимости от цвета падающего потока. Поэтому в условиях нормальной освещенности обычный глаз имеет максимальное угловое разрешение вблизи оптической оси хрусталика, максимальное различие цветовых оттенков. Хотя у некоторых людей наблюдаются патологические отклонения, связанные с уменьшением, а иногда отсутствием способности формировать различные нейросигналы в зависимости от длины волны света. Эта патология называется дальтонизм. Люди с острым зрением практически не бывают дальтониками.

Колбочки распределены почти равномерно по всей сетчатке глаза, имеют больший размер и, следовательно, большую чувствительность.

В условиях дневного освещения сигнал от палочек значительно превышает сигнал от колбочек, глаз настроен на работу с ярким освещением (так называемое “дневное” зрение). Палочки по сравнению с колбочками имеют больший уровень “темнового” сигнала (в темноте мы видим ложные светлые “искорки”).

Если неуставшего человека с обычным зрением поместить в тёмную комнату и дать ему адаптироваться (“привыкнуть”) к темноте, то “темновой” сигнал от палочек сильно уменьшится и в восприятии света начнут эффективнее работать колбочки (“сумеречное” зрение). В знаменитых опытах С.И.Вавилова было доказано, что человеческий глаз (вариант “колбочки”) способен регистрировать отдельные 2-3 кванта света.

Таким образом, динамический диапазон человеческого глаза: от яркого солнца до отдельных фотонов, составляет 10 10 (т.е. 200 децибел!). Наилучшим по этому параметру искусственным светоприемником является фотоэлектронный умножитель (ФЭУ). В режиме счета фотонов он имеет динамический диапазон до 10 5 (т.е. 100 дБ), а с устройством автоматического переключения на регистрацию в аналоговый режим динамический диапазон ФЭУ может достигать 10 7 (140 дБ), что в тысячу раз хуже по динамическому диапазону, чем глаз человека.

Спектральный диапазон чувствительности у палочек весьма широк (от 4200 до 6500 ангстрем) с максимумом примерно на длине волны 5550 ангстрем. У колбочек спектральный диапазон более узкий (от 4200 до 5200 ангстрем) с максимумом на длине волны около 4700 ангстрем. Поэтому при переходе от дневного зрения к сумеречному обычный человек теряет способность различать цвета (недаром говорят: “ночью все кошки серы”), а эффективная длина волны смещается в синюю часть, в область высокоэнергетичных фотонов. Этот эффект смещения спектральной чувствительности называется эффектом Пуркинье. Им (косвенным образом) обладают многие цветные ПЗС-матрицы, несбалансированные по RGB-сигналу на белый цвет. Это следует учитывать при получении и использовании информации о цвете в телесистемах с камерами, не имеющими автоматической коррекции белого.

Линейность и гамма-коррекция.

ПЗС обладают высокой степенью линейности. Другими словами, число электронов, собираемых в пикселе, строго пропорционально числу фотонов, попавших на ПЗС.

Параметр “линейность” тесно связан с параметром “динамический диапазон”. Динамический диапазон, как правило, может существенно превосходить диапазон линейности, если в системе предусмотрена аппаратная или дальнейшая программная коррекция работы прибора в нелинейной области. Обычно легко поддается корректировке сигнал с отклонением от линейности не более чем на 10%.

Совершенно другая ситуация наблюдается в случае фотографических эмульсий. Эмульсии имеют сложную зависимость реакции на свет и, в лучшем случае, позволяют достичь фотометрической точности в 5% и то только в части своего и без того узкого динамического диапазона. ПЗС же линейны с точностью до 0,1% практически во всем динамическом диапазоне. Это позволяет относительно легко устранять влияние неоднородности чувствительности по полю. Кроме того, ПЗС позиционно стабильны. Положение отдельно взятого пиксела строго фиксировано при изготовлении прибора.

Кинескоп в мониторе имеет степенную зависимость яркости от сигнала (показатель степени 2,2), что приводит к уменьшению контрастности в темных участках и к увеличению - в ярких; в то же время, как было уже отмечено, современные ПЗС-матрицы производят линейный сигнал. Для компенсации общей нелинейности в камеру обычно встраивается устройство (гамма-корректор), предъискажающее сигнал с показателем степени 1/2,2, т.е. 0,45. Некоторые камеры предоставляют выбор коэффициента предъискажения, например, вариант 0,60 приводит к субъективному повышению контрастности, что производит впечатление более “четкой” картинки. Побочный эффект - гамма-коррекция означает дополнительное усиление слабых сигналов (в частности, шума), т.е. одна и та же камера с включенной Г=0.4 будет примерно вчетверо “чувствительнее”, чем при Г=1. Однако еще раз напомним, что никакой усилитель не может увеличить отношение сигнал/шум.

Растекание заряда.

Максимальное количество электронов, накапливаемых в пикселе, ограничено. Для матриц среднего качества изготовления и типичных размеров это значение обычно составляет 200000 электронов. И если суммарное количество фотонов за время экспозиции (кадра) достигнет предельного значения (200000 или более при квантовом выходе 90 % или более), то зарядовый пакет начнет перетекать в соседние пикселы. Детали изображения начинают сливаться. Эффект усиливается, когда “лишний” не поглощенный тонким телом кристалла световой поток отражается от подложки-основы. При световых потоках в пределах динамического диапазона фотоны не доходят до подложки, они практически все (при большом квантовом выходе) трансформируются в фотоэлектроны. Но вблизи верхней границы динамического диапазона происходит насыщение и нетрансформированные фотоны начинают “блуждать” по кристаллу преимущественно с сохранением направления начального входа в кристалл. Большая часть этих фотонов достигает подложки, отражается и этим увеличивает вероятность последующей трансформации в фотоэлектроны, перенасыщая зарядовые пакеты и без того находящиеся у границы растекания. Однако, если на подложку нанести поглощающий слой, так называемое противобликовое покрытие (антиблюмминг), то эффект растекания сильно уменьшится. Многие современные матрицы, выпускаемые по новым технологиям, имеют антиблюмминг, что является одним из составляющих системы компенсации заднего света.

Стабильность и фотометрическая точность.

Даже наиболее чувствительные ПЗС-видеокамеры бесполезны для применения в условиях низкого освещения, если они имеют нестабильную чувствительность. Стабильность - неотъемлемое свойство ПЗС как твердотельного прибора. Здесь, прежде всего, имеется ввиду стабильность чувствительности во времени. Временная стабильность проверяется по измерениям потоков от специальных стабилизированных источников излучения. Она определяется стабильностью квантового выхода самой матрицы и стабильностью работы электронной системы считывания, усиления и регистрации сигнала. Эта результирующая стабильность работы видеокамеры является основным параметром при определении фотометрической точности, т.е. точности измерения регистрируемого светового сигнала.

Для хороших образцов матриц и качественной электронной системы фотометрическая точность может достигать 0,4 - 0,5%, а в некоторых случаях, при оптимальных условиях работы матрицы и применении специальных методов обработки сигнала, - 0.02%. Результирующая фотометрическая точность определяется несколькими основными составляющими:

  • временной нестабильностью системы в целом;
  • пространственной неоднородностью чувствительности и, прежде всего, неоднородностью высокочастотной (т.е. от пиксела к пикселу);
  • величиной квантовой эффективности видеокамеры;
  • точностью оцифровки видеосигнала для цифровых видеокамер;
  • величиной шумов разных типов.

Даже если ПЗС-матрица имеет большие неоднородности в чувствительности, их влияние на результирующую фотометрическую точность может быть снижено специальными методами обработки сигнала, если конечно эти неоднородности стабильны во времени. С другой стороны, если матрица обладает высокой квантовой эффективностью, но нестабильность которой велика, результирующая точность регистрации полезного сигнала будет низкой. В этом смысле для нестабильно работающих приборов точность регистрации полезного сигнала (или фотометрическая точность) является более важной характеристикой, чем характеристика отношения сигнал/шум.

Отдельно взятый элемент чувствителен во всем видимом спектральном диапазоне, поэтому над фотодиодами цветных ПЗС-матриц используется светофильтр, который пропускает только один из трёх цветов: красного (Red), зелёного (Green), синего (Blue) или жёлтого (Yellow), пурпурного (Magenta), бирюзового (Cyan). А в свою очередь в чёрно-белой ПЗС-матрице таких фильтров нет.


УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ПИКСЕЛЯ

Пиксель состоит из p-подложки, покрытой прозрачным диэлектриком, на который нанесён светопропускающий электрод, формирующий потенциальную яму.

Над пикселем может присутствовать светофильтр (используется в цветных матрицах) и собирающая линза (используется в матрицах, где чувствительные элементы не полностью занимают поверхность).

На светопропускающий электрод, расположенный на поверхности кристалла, подан положительный потенциал. Свет, падающий на пиксель, проникает вглубь полупроводниковой структуры, образуя электрон-дырочную пару. Образовавшиеся электрон и дырка растаскиваются электрическим полем: электрон перемещаются в зону хранения носителей (потенциальную яму), а дырки перетекают в подложку.

Для пикселя присущи следующие характеристики:

  • Ёмкость потенциальной ямы - это количество электронов, которое способна вместить потенциальная яма.
  • Спектральная чувствительность пикселя - зависимость чувствительности (отношение величины фототока к величине светового потока) от длины волны излучения.
  • Квантовая эффективность (измеряется в процентах) - физическая величина, равная отношению числа фотонов, поглощение которых вызвало образование квазичастиц, к общему числу поглощённых фотонов. У современных ПЗС матриц этот показатель достигает 95%. Для сравнения, человеческий глаз имеет квантовую эффективность порядка 1%.
  • Динамический диапазон - отношение напряжения или тока насыщения к среднему квадратичному напряжению или току темнового шума. Измеряется в дБ.
УСТРОЙСТВО ПЗС-МАТРИЦЫ И ПЕРЕНОСА ЗАРЯДА


ПЗС-матрица разделена на строки, а в свою очередь каждая строка разбита на пиксели. Строки разделены между собой стоп слоями (p +), которые не допускают перетекания зарядов между ними. Для перемещения пакета данных используются параллельный, он же вертикальный (англ. VCCD) и последовательный, он же горизонтальный (англ. HCCD) регистры сдвига.

Простейший цикл работы трехфазного регистра сдвига начинается с того, что на первый затвор подается положительный потенциал, в результате чего образуется яма, заполненная образовавшимися электронами. Затем на второй затвор подадим потенциал, выше, чем на первом, вследствие чего под вторым затвором образуется более глубокая потенциальная яма, в которую перетекут электроны из под первого затвора. Чтобы продолжить передвижение заряда следует уменьшить значение потенциала на втором затворе, и подать больший потенциал на третий. Электроны перетекают под третий затвор. Данный цикл продолжается от места накопления до непосредственно считывающего горизонтального резистора. Все электроды горизонтального и вертикального регистров сдвига образуют фазы (фаза 1, фаза 2 и фаза 3).

Классификация ПЗС-матриц по цветности:

  • Чёрно-белые
  • Цветные

Классификация ПЗС-матриц по архитектуре:

Зелёным цветом обозначены фоточувствительные ячейки, серым - непрозрачные области.

Для ПЗС-матрицы присущи следующие характеристики:

  • Эффективность передачи заряда - отношение количества электронов в заряде в конце пути по регистру сдвига к количеству в начале.
  • Коэффициент заполнения - отношение площади заполненной светочувствительными элементами к полной площади светочувствительной поверхности ПЗС-матрицы.
  • Темновой ток - электрический ток, который протекает по фоточувствительному элементу, в отсутствие падающих фотонов.
  • Шум считывания - шум, возникающий в схемах преобразования и усиления выходного сигнала.

Матрицы с кадровым переносом. (англ. frame transfer).

Преимущества:

  • Возможность занять 100% поверхности светочувствительными элементами;
  • Время считывания ниже, чем у матрицы с полнокадровым переносом;
  • Смазывание меньше, чем в ПЗС-матрице с полнокадровым переносом;
  • Имеет преимущество рабочего цикла по сравнению полнокадровой архитектурой: ПЗС-матрица с кадровым переносом всё время собирает фотоны.

Недостатки:

  • При считывании данных следует перекрывать затвором источник света, чтобы избежать появления эффекта смазывания;
  • Увеличен путь перемещения заряда, что негативно сказывается на эффективности передачи заряда;
  • Изготовление и производство данных матриц дороже, чем устройств с полнокадровым переносом.

Матрицы с межстрочным переносом или матрицы с буферизацией столбцов (англ. Interline-transfer).

Преимущества:

  • Нет необходимости применять затвор;
  • Отсутствует смазывание.

Недостатки:

  • Возможность заполнить поверхность чувствительными элементами не более чем на 50%.
  • Скорость считывания ограничена скоростью работы регистра сдвига;
  • Разрешающая способность ниже, чем у ПЗС-матриц с кадровым и полнокадровым переносом.

Матрицы со строчно-кадровым переносом или матрицы с буферизацией столбцов (англ. interline).

Преимущества:

  • Процессы накопления и переноса заряда пространственно разделены;
  • Заряд из элементов накопления передаётся в закрытые от света ПЗС-матрицы регистры переноса;
  • Перенос заряда всего изображения осуществляется за 1 такт;
  • Отсутствует смазывание;
  • Интервал между экспонированиями минимален и подходит для записи видео.

Недостатки:

  • Возможность заполнить поверхность чувствительными элементами не более чем на 50%;
  • Разрешающая способность ниже, чем у ПЗС-матриц с кадровым и полнокадровым переносом;
  • Увеличен путь перемещения заряда, что негативно сказывается на эффективности передачи заряда.

ПРИМЕНЕНИЕ ПЗС-МАТРИЦ

НАУЧНОЕ ПРИМЕНЕНИЕ

  • для спектроскопии;
  • для микроскопии;
  • для кристаллографии;
  • для рентгеноскопии;
  • для естественных наук;
  • для биологических наук.

КОСМИЧЕСКОЕ ПРИМЕНЕНИЕ

  • в телескопах;
  • в звёздных датчиках;
  • в спутниках слежения;
  • при зондировании планет;
  • бортовое и ручное оборудование экипажа.

ПРОМЫШЛЕННОЕ ПРИМЕНЕНИЕ

  • для проверки качества сварных швов;
  • для контроля равномерности окрашенных поверхностей;
  • для исследования износостойкости механических изделий;
  • для считывания штрих-кодов;
  • для контроля качества упаковки продукции.

ПРИМЕНЕНИЕ ДЛЯ ОХРАНЫ ОБЪЕКТОВ

  • в жилых квартирах;
  • в аэропортах;
  • на строительных площадках;
  • на рабочих местах;
  • в «умных» камерах, распознающих лицо человека.

ПРИМЕНЕНИЕ В ФОТОГРАФИРОВАНИИ

  • в профессиональных фотоаппаратах;
  • в любительских фотоаппаратах;
  • в мобильных телефонах.

МЕДИЦИНСКОЕ ПРИМЕНЕНИЕ

  • в рентгеноскопии;
  • в кардиологии;
  • в маммографии;
  • в стоматологии;
  • в микрохирургии;
  • в онкологии.

АВТО-ДОРОЖНОЕ ПРИМЕНЕНИЕ

  • для автоматического распознавания номерных знаков;
  • для контроля скорости;
  • для управления транспортным потоком;
  • для пропуска на стоянку;
  • в полицейских системах наблюдения.

Как возникают искажения при съёмке движущихся объектов на сенсор со строковым затвором:



Close